Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T19:54:47.726Z Has data issue: false hasContentIssue false

Alkali Metasomatism and the Petrology of Some Keratophyres

Published online by Cambridge University Press:  01 May 2009

M. H. Battey
Affiliation:
Auckland Institute Museum, P.O. Box 9027, Newmarket, Auckland, New Zealand.

Abstract

Petrographic and chemical study of New Zealand keratophyres, occurring in a typical spilite-keratophyre association, shows that they were originally partly glassy flow-rocks and breccias comparable with rhyolites of young volcanic areas. They are now composed of a low temperature mineral assemblage inconsistent with textural evidence of high temperature extrusive origin, and alkali metasomatism has enriched some rocks in soda and others in potash, so that their compositions are symmetrically disposed about that of a primary rhyolite magma with roughly equal amounts of the two alkalis.

Data from other occurrences suggest that this condition is common amongst described keratophyres.

Though the rocks do not originate from any special magma, the term keratophyre should be retained, with appropriate qualifiers, for old rhyolites with low-temperature mineralogy, which, incidentally, will often be found to have been affected by alkali metasomatism.

Type
Articles
Copyright
Copyright © Cambridge University Press 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, E. T., and Day, A. L., 1935. Hot springs of Yellowstone National Park. Carnegie Inst. Washington Publ. No. 466.Google Scholar
Amstutz, C, 1950. Spilites and quartz-porphyries in the Canton of Glarus (Swiss Alps) (abstr.). Bull. Geol. Soc. Amer., lxi, 1519.Google Scholar
Andersen, O., 1928. The genesis of some types of feldspar from granite pegmatites. Norsk. Geol. Tidssk., x, 116203.Google Scholar
Anderson, C. A., 1933. Volcanic history of Glass Mountain, Northern California. Amer. Journ. Sci., ccxxvi, 485506.CrossRefGoogle Scholar
Bartrum, J. A., 1929. Igneous rocks at Mount Camel, Hohoura, North Auckland. N.Z. Journ. Sci. & Techn., x, 356360.Google Scholar
Bartrum, J. A. 1936. Spilitic rocks in New Zealand. Geol. Mag., lxxiii, 414423.CrossRefGoogle Scholar
Battey, M. H., 1950. The geology of Rangiawhia Peninsula, Doubtless Bay, North Auckland. Auckland Inst. & Mus. Rec., iv, no. 1, 3559.Google Scholar
Battey, M. H. 1951. Notes to accompany a topographical map and a provisional geological map of Great Island, Three Kings Group. Auckland Inst. & Mus. Rec., iv, no. 2, 93–8.Google Scholar
Beskow, G., 1929. Södra Storfjället im südlichen Lappland. Sver. Geol. Undersök., Årsbok xxi, ser. C, no. 350.Google Scholar
Bowen, N. L., 1937. Recent high-temperature research on silicates and its significance in igneous geology. Amer. Journ. Sci., ccxxxiii, 121.CrossRefGoogle Scholar
Bowen, N. L. and Tuttle, O. F., 1950. The system NaAlSi3O8-KAlSi3O8-H2O. Journ. Geol., lviii, 489511.CrossRefGoogle Scholar
Bragg, W. L., 1937. Atomic structure of minerals. Cornell Univ. Press.Google Scholar
Chayes, F., 1952. Notes on the staining of potash feldspar with sodium cobaltinitrite in thin section. Amer. Min., xxxvii, 337340.Google Scholar
Cox, A. H., 1915. The geology of the district between Abereiddy and Aber-castle (Pembrokeshire). Quart. Journ. Geol. Soc., lxxi, 273342.CrossRefGoogle Scholar
Daly, R. A., 1933. Igneous rocks and the depths of the earth. McGraw-Hill.Google Scholar
Dakyns, J. R., and Greenly, E., 1905. On the probable Peléan origin of the felsitic slates of Snowdon, and their metamorphism. Geol. Mag., 12 5, ii, 541549.CrossRefGoogle Scholar
Dewey, H., and Flett, J. S., 1911. Some British pillow-lavas and the rocks associated with them. Geol. Mag., 12 5, viii, 202–9, 241–8.CrossRefGoogle Scholar
Donnay, G., and Donnay, J. D. H., 1952. The symmetry change in the high-temperature alkali-feldspar series. Amer. Journ. Sci., Bowen Vol., 115132.Google Scholar
Fenner, C. N., 1936. Bore-hole investigations in Yellowstone Park. Journ. Geol., xliv, 225315.CrossRefGoogle Scholar
Finlayson, A. M., 1909. Problems in the geology of the Hauraki gold field, New Zealand. Econ. Geol., iv, 632645.CrossRefGoogle Scholar
Flett, J. S., 1911. In The geology of Knapdale, Jura and North Kintyre. Mem. Geol. Surv. Scotland.Google Scholar
Flett, J. S. 1913. The geology of the country around Newton Abbot. Mem. Geol. Survey.Google Scholar
Geijer, P., 1910. Geology of the Kiruna district, 2; Igneous rocks and iron ores of Kiirunavaara, Luossovaara and Tuolluvaara. Stockholm, Luossovaara Kiirunavaara Aktiebolag.CrossRefGoogle Scholar
Geijer, P., 1931. Berggrunden inom Malmtrakten Kiruna-Gällivare-Pajala. Sver. Geol. Undersök., Årsbok xxiv, ser. C, no. 366.Google Scholar
Gilluly, J., 1933. Replacement origin of the albite granite near Sparta, Oregon. U.S. Geol. Surv. Prof. Paper, 175C.Google Scholar
Gilluly, J., 1935. Keratophyres of eastern Oregon and the spilite problem. Amer. Journ. Sci., ccxxix, 225252, 336–352.CrossRefGoogle Scholar
Götz, H., 1937. Beiträge zur Kenntnis der varistischen Gesteins- und Mineral-provinz im Lahn-Dillgebeit, 6. Die Keratophyre der Lahnmulde. Min. Petr. Mitt., xlix, 168215.CrossRefGoogle Scholar
Grange, L. I., 1937. The geology of the Rotorua-Taupo Subdivision. N.Z. Geol. Survey, Bull. xxxvii (n.s.).Google Scholar
Guppy, E. M., 1931 Chemical analyses of igneous rocks, metamorphic rocks and minerals. Mem. Geol. Survey.Google Scholar
Harker, A., 1935. Petrology for students. Cambridge Univ. Press.Google Scholar
Higazy, R. A., 1950. Significance of the orthoclase-albite-anorthite, and the NaAlSiO4-KAlSiO4-SiO2 equilibrium diagrams in igneous petrogeny. Amer. Min., xxxv, 10391048.Google Scholar
Iddings, J. P., 1899. Geology of the Yellowstone National Park. U.S. Geol. Surv. Man. xxxii, pt. 2.Google Scholar
Johannsen, A., 1939. A descriptive petrography of the igneous rocks, Vol. I, Univ. Chicago Press.Google Scholar
Lehmann, E., 1941. Eruptivgesteine und Eisenerze im Mittel- und Oberdevon der Lahnmulde. Wetzlar.Google Scholar
Lehmann, E., 1949. Das Keratophyr-Weilburgite Problem. Heidelburg. Beitr. Min. Pet., ii, 1166.Google Scholar
Mackenzie, W. S., 1952. Optical and X-ray studies of alkali feldspars. Carnegie Inst. Washington Yearbook, no. 51, 49.Google Scholar
Mountain, E. D., 1925. Potash-oligoclase from Mt. Erebus, Antarctic, and anorthoclase from Mt. Kenya, East Africa. Miner. Mag., xx, 331345.Google Scholar
Naumann, C. F., 1849. Lehrbuch der Geognosie, vol. 1, Leipzig.Google Scholar
Oftedahl, C., 1948. Studies on the igneous rock complex of the Oslo region, IX. The feldspars. Norske Vidensk.-Akad.Oslo Skr., I Mat.-Naturv. Klasse, no. 3.Google Scholar
Osborne, G. D., 1925. Geology and petrography of the Clarencetown-Paterson district, pt. IV. Petrography: Proc. Linn. Soc. N.S.W., 112138.Google Scholar
Reed, F. R. C., 1895. The geology of the country around Fishguard, Pembrokeshire. Quart. Journ. Geol. Soc., li, 149195.CrossRefGoogle Scholar
Roever, W. P. De, 1942. Olivine basalts and their alkaline differentiates in the Permian of Timor. Geological Expedition to the Lesser Sunda Islands, iv, 213289.Google Scholar
Sargent, H. C., 1917. On a spilitic facies of Lower Carboniferous lava-flows in Derbyshire. Quart. Journ. Geol. Soc., Ixxiii, 1723.Google Scholar
Schairer, J. F., 1950. The alkali feldspar join in the system NaAlSiO4-KAlSiO4-SiO2. Journ. Geol., Iviii, 512517.CrossRefGoogle Scholar
Schairer, J. F., and Bowen, N. L., 1947. The system anorthite-leucite-silica. Bull. Soc. géol. Finlande, xx, 6787.Google Scholar
Spencer, E., 1937. The potash-soda feldspars, I. Thermal stability. Miner. Mag., xxiv, 453494.Google Scholar
Sundius, N., 1915. Geologie des Kirunagebiets, 4; Beiträge zur Geologie des südlichen Teils des Kirunagebiets. Uppsala, Vitensk, prakt. Undersök. i Lappland.Google Scholar
Teall, J. J. H., 1888. British petrography. London.Google Scholar
Terzaghi, R. D., 1935. The origin of the potash rich rocks. Amer. Journ. Sci., ccxxix, 369380; ccxxx, 141–142.CrossRefGoogle Scholar
Terzaghi, R. D. 1948. Potash-rich rocks of the Esterel, France. Amer. Min., xxxiii, 1830.Google Scholar
Tilley, C. E., 1919. The petrology of the granitic mass of Cape Willoughby, Kangaroo Island, pt. 1. Trans. and Proc. Roy. Soc. South Australia, xliii, 316341.Google Scholar
Tomkeieff, S. I., 1941. Metasomatism in the basalt of Haddenrig quarry near Kelso and the veining of the rocks exposed there. Miner. Mag., xxv, 4559.Google Scholar
Turner, F. J., and Verhoogen, J., 1951. Igneous and metamorphic petrology. McGraw-Hill.Google Scholar
Tuttle, O. F., 1952 a. Optical studies on alkali feldspars. Amer. Journ. Sci., Bowen Vol., 553567.Google Scholar
Tuttle, O. F. 1952 b. Origin of the contrasting mineralogy of extrusive and plutonic salic rocks. Journ. Geol., lx, 107124.CrossRefGoogle Scholar
Williams, H., 1927. The geology of Snowdon (North Wales). Quart. Journ. Geol. Soc., lxxxiii, 346427.CrossRefGoogle Scholar