Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-20T18:37:59.294Z Has data issue: false hasContentIssue false

The Cenomanian-Turonian Boundary Event in northern Spain

Published online by Cambridge University Press:  01 May 2009

C. R. C. Paul
Affiliation:
Department of Earth Sciences, University of Liverpool, Liverpool L69 3BX, UK
S. Mitchell
Affiliation:
Department of Earth Sciences, University of Liverpool, Liverpool L69 3BX, UK
M. Lamolda
Affiliation:
Faculdad de Ciencias, Universidad del Pais Vasco, Lejona Campus, 48080 Bilbao, Spain
A. Gorostidi
Affiliation:
Faculdad de Ciencias, Universidad del Pais Vasco, Lejona Campus, 48080 Bilbao, Spain

Abstract

A sparse but moderately diverse nannoflora is recorded through the Cenomanian-Turonian Boundary Event (CTBE) at Menoyo, Spain and allows recognition of the late Cenomanian Eiffellithus turriseiffelii Zone and the early Turonian Quadrum gartneri Zone, as well as five significant nannofossil bioevents associated with the CTBE. Carbon isotopes record a modest excursion which lasted 250–270 thousand years (ka) in three phases, buildup (105 ka), plateau (126 ka) and recovery (42 ka). Acid insoluble residue values imply that sea level rose through the buildup phase, indicated by a reduction in the accumulation rate of siliciclastic sediment. However, oceanic productivity apparently declined through the CTBE, indicated by reduction in accumulation rates of total carbonate and intact coccoliths to less than a quarter of their initial values. These patterns are very similar to those found through the CTBE at Dover, England and reflect widespread not local effects. A combination of lithological changes, seven key bioevents, and details of the δ13C curve, allows us to suggest a bed-by-bed correlation through the CTBE between Dover and Menoyo, demonstrating the practicality of cyclostratigraphy for international correlation at a precision of ± 10 ka. Graphic correlation produces a straight line fit despite wide fluctuations in sediment accumulation rates at both localities. This can only occur if changes were in phase and of similar magnitudes at both localities, again suggesting widespread, perhaps global, control.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, M. A., Schlanger, S. O., & Jenkyns, H. C., 1987. The Cenomanian-Turonian oceanic anoxic event. II. Palaeoceanographic controls on organic matter production and preservation. In Marine Petroleum Source Rocks (eds Brooks, J., and Fleet, A. J.) pp. 401–20. Geological Society Special Publication no. 26.Google Scholar
Birkelund, T., Hancock, J. M., Hart, M. B., Rawson, P. F., Remane, J., Robaszynski, F., Schmidt, F., & Surlyk, F., 1984. Cretaceous stage boundariesproposals. Bulletin of the Geological Society of Denmark 33, 320.CrossRefGoogle Scholar
Bralower, T. J., 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian Boundary interval: implications for the origin and timing of oceanic anoxia. Paleoceanography 3, 275316.CrossRefGoogle Scholar
Colin, J.-P., Lamolda, M. A., & Rodriguez-Lazaro, J., 1982. Los ostracodos del Cenomaniense superior y Turoniense de la Cuenca Vasco-Cantábrica. Revista Española de Micropaleontología 14, 187220.Google Scholar
Craig, H., 1957. Isotopic standards for carbon and oxygen factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133–49.CrossRefGoogle Scholar
Crux, J. A., 1982. Upper Cretaceous (Cenomanian to Campanian) calcareous nannofossils. In Stratigraphical Index of Calcareous Nannofossils (ed. Lord, A. R.), pp. 81135. British Micropalaeontological Society Special Publication.Google Scholar
de Boer, P. L., 1986. Changes in organic carbon burial during the early Cretaceous. In North Atlantic Palaeoceanography (eds Summerhayes, C. P., and Shackleton, N. J.), pp. 321–31. Geological Society Special Publication no. 21.Google Scholar
Dennison, J. M., & Hay, W. W., 1967. Estimating the needed sampling area for subaquatic ecologic studies. Journal of Paleontology 41, 706–8.Google Scholar
Ditchfield, P., & Marshall, J. D., 1989. Isotopic variation in rhythmically bedded chalks: paleotemperature variation in the Upper Cretaceous. Geology 17, 842–5.2.3.CO;2>CrossRefGoogle Scholar
Friedman, I., & O'Neil, J. R., 1977. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry (ed. Fleischer, M.). United States Geological Survey Professional Paper 440.KK.Google Scholar
Gale, A. S., 1990. A Milankovitch scale for Cenomanian time. Terra Nova 1, 420–5.CrossRefGoogle Scholar
Gale, A. S., Jenkyns, H. C., Kennedy, W. J. M., & Corfield, R., 1993. Chemostratigraphy versus biostratigraphy: data from around the Cenomanian-Turonian boundary. Journal of the Geological Society, London 150, 2932.CrossRefGoogle Scholar
Gorostidi, A., & Lamolda, M. A., 1991. El paso Cenomaniense-Turoniense de Menoyo (Alava). Variaciones de la nannoflora calcarea. Geogaceta 10, 54–7.Google Scholar
Hart, M. R., 1985. Ocean Anoxic Event 2 on-shore and offshore SW England. Proceedings of the Ussher Society 6, 183–90.Google Scholar
Hart, M. B., Dodsworth, P., Ditchfield, P. W., Duane, A. M., & Orth, C. J., 1991. The late Cenomanian event in eastern England. Historical Biology 5, 339–54.CrossRefGoogle Scholar
Herbin, J. P., Montadert, L., Muller, C., Gomez, R., Thurow, J., & Wiedmann, J., 1986. Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. In North Atlantic Palaeoceanography (eds Summerhayes, C. P., and Shackleton, N. J.), pp. 389422. Geological Society Special Publication no. 21.Google Scholar
Hilbrecht, H., & Hoefs, J., 1986. Geochemical and palaeontological studies of the §13C anomaly in Boreal and north Tethyan Cenomanian-Turonian sediments in Germany and adjacent areas. Palaeogeography, Palaeoclimatology, Palaeoecology 53, 169–89.CrossRefGoogle Scholar
Hilbrecht, H., Hubberton, H. W., & Oberhansli, H., 1992. Biogeography of planktonic foraminifera and regional carbon isotope variations: productivity and water masses in Late Cretaceous Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 93, 407–21.CrossRefGoogle Scholar
Hill, M. E., 1975. Selective dissolution of mid-Cretaceous (Cenomanian) calcareous nannofossils. Micropalaeontology 21, 227–35.CrossRefGoogle Scholar
Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P. N., Tocher, D. A., Horne, D., & Rosenfeld, A., 1988. Microfossil assemblages and the Cenomanian—Turonian (late Cretaceus) Oceanic Anoxic Event. Cretaceous Research 9, 3103.CrossRefGoogle Scholar
Jeans, C. V., Long, D., Hall, M. A., Bland, D. J., & Cornford, C., 1991. The geochemistry of the Plenus Marls at Dover, England: evidence for fluctuating oceanographic conditions and of glacial control during the development of the Cenomanian—Turonian δ13C anomaly. Geological Magazine 128, 603–32.CrossRefGoogle Scholar
Jefferies, R. P. S., 1962. The palaeoecology of the Actinocamax plenus Subzone (lowest Turonian) in the Anglo-Paris Basin. Palaeontology 4, 609–47.Google Scholar
Jefferies, R. P. S., 1963. The stratigraphy of the Actinocamax plenus Subzone (Turonian) in the Anglo-Paris Basin. Proceedings of the Geologist's Association 74, 133.CrossRefGoogle Scholar
Jenkyns, H. C., 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, London 137, 171–88.CrossRefGoogle Scholar
Jenkyns, H. C., Gale, A. S., & Corfield, R. M., 1994. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine 131, 134.CrossRefGoogle Scholar
Lamolda, M. A., 1978. Le passage Cénomanien—Turonien dans la Coupe de Menoyo (Alaya, Alava). Cahiers de Micropaléontologie 4, 21–7.Google Scholar
Lamolda, M. A., 1982. Le Turonien Basco—Cantabrique et ses faunes caractéristiques. Mémoires du Muséum National d'Histoire Naturelle C49, 101–12.Google Scholar
Lamolda, M. A., Lopez, G., & Martinez, R., 1989. Turonian integrated biostratigraphy in the Estella Basin (Navarra, Spain). In Cretaceous of the Western Tethys (ed. Wiedmann, J.), pp. 145–59. Stuttgart: Schweizerbart'sche.Google Scholar
Lamolda, M. A., Gorostidi, A., & Paul, C. R. C., 1994. Quantitative estimates of calcareous nannofossil changes across the Plenus Marls (latest Cenomanian), Dover, England: implications for the generation of the Cenomanian—Turonian Boundary Event. Cretaceous Research 14, 143–64.CrossRefGoogle Scholar
Paul, C. R. C., 1992. Milankovitch and microfossils: principles and practice of palaeoecological analysis illustrated by Cenomanian chalk-marl rhythms. Journal of Micropalaeontology 11, 95105.CrossRefGoogle Scholar
Roth, P. H., 1973. Calcareous nannofossils—Leg 17, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 17, 695741.Google Scholar
Roth, P. H., & Krumbach, K. R., 1986. Middle Cretaceous calcareous nannofossil biostratigraphy and preservation in the Atlantic and Indian oceans: implications for paleoceanography. Marine Micropaleontology 10, 235–66.CrossRefGoogle Scholar
Schlanger, S. O., & Jenkyns, H. C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55, 179184.Google Scholar
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., & Scholle, P. A., 1987). The Cenomanian—Turonian Oceanic Anoxic Event. I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. In Marine Petroleum Source Rocks (eds Brooks, J., and Fleet, A. J.), pp. 371–99. Geological Society Special Publication no. 26.Google Scholar
Sepkoski, J. J. Jr, 1986. Phanerozoic overview of mass extinctions. In Patterns and Processes in the History of Life (eds Raup, D. M., and Jablonski, D.), pp. 277–95. Dahlem Konferenzen: Life Science Research Report no. 36.CrossRefGoogle Scholar
Shaw, A. B., 1964. Time in Stratigraphy. New York: McGraw-Hill, xi + 365 pp.Google Scholar