Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T19:33:43.690Z Has data issue: false hasContentIssue false

Fracture spacing and its relation to bed thickness

Published online by Cambridge University Press:  01 May 2009

Qin Huang
Affiliation:
Tectonique Quantitative, Département de géologie Structurale, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France
J. Angelier
Affiliation:
Tectonique Quantitative, Département de géologie Structurale, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France

Abstract

Using examples from the Gulf of Suez and southeastern France, the distribution of tension tectonic joints as well as shear tectonic joints in continuous profiles is shown to fit a Gamma distribution. The parameters of this distribution are determined using the maximum likelihood method. Apparent fit with negative exponential distribution in photointerpretation analysis results from lack of resolution. The average joint spacing is directly proportional to bed thickness; it decreases when the degree of rock consolidation increases.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baecher, G. B. 1983. Statistical analysis of rock mass fracturing. Mathematical Geology 15, 329–48.CrossRefGoogle Scholar
Beaudoin, B. & Fries, G. 1982. Filons sédimentaires, per descendum, dans un système de fractures ouvertes. Le cas de l' Albien de Bévons (Alpes de Haute-Provence). Comptes-Rendus de l' Académie des Sciences, Paris, II, 295, 385–7.Google Scholar
Bogdonov, A. A. 1947. The intensity of cleavage as related to the thickness of beds (in Russian). Soviet Geology 16.Google Scholar
Bridges, M. C. 1976. Presentation of fracture data for rock mechanics. 2nd Australian–New Zealand conference on Geomechanics, pp. 144–8. Australia: Institute of Engineers.Google Scholar
Cruden, D. M. 1977. Describing the size of discontinuities. International Journal of Rock Mechanics and Mining Sciences 14, 133–7.CrossRefGoogle Scholar
Davis, H. T. 1963. Tables of Higher Mathematical Functions. Bloomington: Principia Press.Google Scholar
Fisher, R. A. 1953. Dispersion on a sphere. Proceedings of the Royal Society of London, Series A, 217, 295305.CrossRefGoogle Scholar
Gauthier, B. & Angelier, J. 1986. Distribution et signification géodynamique des systèmes de joints en contexte distensif: un exemple dans le rift de Suez. Comptes-Rendus de l'académie des Sciences, Paris, II, 303, 1147–52.Google Scholar
Hancock, P. L. 1985. Brittle microtectonics: principles and practice. Journal of Structural Geology 7, 437–57.CrossRefGoogle Scholar
Hancock, P. L., Al-Kadhi, A., Barka, A. A. & Bevan, T. V. 1987. Aspects of analysing brittle structures. Annales Tectonicae 1, 519.Google Scholar
Hobbs, D. W. 1967. The formation of tension joints in sedimentary rocks: an explanation. Geological Magazine 104, 550–6.CrossRefGoogle Scholar
Krumbein, W. C. & Graybill, F. A. 1965. An Introduction to Statistical Models in Geology. New York: McGraw-Hill Book Company, 475 pp.Google Scholar
Ladeira, F. L. & Price, N. J. 1981. Relationship between fracture spacing and bed thickness. Journal of Structural Geology 13, 179–83.CrossRefGoogle Scholar
Miller, S. T. & Borgman, L. E. 1985. Spectral-type simulation of spatially correlated fracture set properties. Mathematical Geology 17, 4152.CrossRefGoogle Scholar
Moran, P. A. P. 1968. An introduction to Probability theory. Oxford: Clarendon Press, 542 pp.Google Scholar
Norris, D. K. 1966. The mesoscopic fabric of rock masses about some Canadian coal mines. Proceedings, International Congress Rock Mechanics, Lisbon, Portugal, 1, 191–8.Google Scholar
Pearson, E. S. & Hartley, H. O. 1954. Biometrika Tables for Statisticians. London: Cambridge University Press.Google Scholar
Pineau, A. 1985. Echantillonnage des espacements entre fractures: une distribution exponentielle négative tronquée. Comptes-Rendus de l'académie des Sciences, Paris, II, 301, 1043–6.Google Scholar
Price, N. J. 1966. Fault and Joint Development in Brittle and Semi-Brittle Rocks. New York: Pergamon Press, 568 pp.Google Scholar
Priest, S. D. & Hudson, J. A. 1976. Discontinuity spacing in rock. International Journal of Rock Mechanics and Mining Sciences 13, 134–53.Google Scholar
Siddiqui, M. M. & Weiss, H. G. 1963. Families of distributions for hourly median power and instantaneous power of received radio signals. Journal of Research, National Bureau of Standards 67D,753–62.Google Scholar
Watson, G. S. 1965. Equatorial distribution on a sphere. Biometrika 52, 193201.CrossRefGoogle Scholar