Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T09:59:17.834Z Has data issue: false hasContentIssue false

Geochemical evidence for the volcanic arc tectonic setting of the Dhanjori volcanics, Singhbhum craton, eastern India

Published online by Cambridge University Press:  01 May 2009

Shabber H. Alvi
Affiliation:
Department of Geology, Aligarh Muslim University, Aligarh 202002, India
M. Raza
Affiliation:
Department of Geology, Aligarh Muslim University, Aligarh 202002, India

Abstract

Geochemical data on the Dhanjori volcanics of the Singhbhum craton indicate that they range from basalt to andesite and show an iron-enrichment trend. Various chemical characteristics suggest that they are differentiated along the trend similar to that of orogenic suites and have a strong affinity with island arc tholeiites. The field relationships as well as other geological information also support this conclusion and indicate their eruption on a thin continental margin. It is inferred that the Dhanjori volcanics were probably erupted as a result of plate convergence in northern Singhbhum with subduction of oceanic crust below the Singhbhum craton.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, J. C. 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology 32, 139–54.CrossRefGoogle Scholar
Banerjee, P. K. 1982. Stratigraphy, petrology and geochemistry of some Precambrian basic volcanic and associated rocks of Singhbhum district Bihar and Mayurbhanj and Keonjhar districts, Orissa. Memoir Geological Survey of India no. III.Google Scholar
Banerji, A. K. 1974. On the stratigraphy and tectonic history of the iron ore-bearing and associated rocks, Singhbhum and adjoining areas of Bihar and Orissa. Journal, Geological Society of India 15, 150–57.Google Scholar
Beswick, A. E. 1976. K and Rb relations in basalts and other mantle derived materials. Is phlogopite the key? Geochimica et Cosmochirnica Acta 40, 1167–83.CrossRefGoogle Scholar
Bose, M. K. & Chakraborti, M. K. 1981. Fossil marginal basin from the Indian shield: A model for the evolution of the Singhbhum Precambrian belt, Eastern India. Geologische Rundschau 70, 504–18.CrossRefGoogle Scholar
Brown, G. C. 1982. Calc-alkaline intrusive rocks: their diversity, evolution and relation to volcanic arcs. In Andesites (ed. Thorpe, R. S.), pp. 437–61. John Wiley and Sons.Google Scholar
Cawthorn, R. G. & O'Hara, M. J. 1976. Amphibole fractionation in calc-alkaline magma genesis. American Journal of Science 276. 309–29.CrossRefGoogle Scholar
Condie, K. C. 1985. Secular variation in the composition of basalts: an index to mantle evolution. Journal of Petrology 26, 545–63.CrossRefGoogle Scholar
Condie, K. C. 1989. Geochemical changes in basalts and andesites across the Archaean–Proterozoic boundary: identification and significance. Lithos 23, 118.CrossRefGoogle Scholar
Coulon, C. & Thorpe, R. S. 1981. Role of continental crust in petrogenesis of orogenic volcanic associations. Tectonophysics 77. 7983.CrossRefGoogle Scholar
Cullers, R. L. & Graf, J. L. 1984. Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks. In Rare Earth Element Geochemistry (ed. Handerson, P.), pp. 237–68. Amsterdam: Elsevier.CrossRefGoogle Scholar
Davies, J. F., Grant, R. W. E. & Whitehead, R. E. S. 1979. Immobile trace elements and Archaean volcanic stratigraphy in the Timmins mining area, Ontario. Canadian Journal of Earth Sciences 16, 305–11.CrossRefGoogle Scholar
Dunn, J. A. & Dey, A. K. 1942. The geology and petrology of eastern Singhbhum and surrounding areas. Memoir, Geological Survey of India 69(2), 281456.Google Scholar
Gaal, G. 1964. Precambrian flysch and molasse-Tectonics and sedimentation around Rakha mines and Jaikan in Singhbhum district, Bihar, India. Proceedings 22nd International Geological Congress, New Delhi, Part 4, 331–56.Google Scholar
Govil, P. K. 1985. X-ray fluorescence analysis of major, minor and selected trace elements in new IWG reference rock samples. Journal, Geological Society of India 26, 3842.Google Scholar
Gupta, A., Basu, A. & Chosh, P. K. 1980. The Proterozoic ultramafic and mafic lavas and tuffs of the Dalma greenstone belt, Singhbhum, Eastern India. Canadian Journal of Earth Science 17, 210–31.CrossRefGoogle Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Iyengar, S. V. P. & Anandalwar, M. 1965. The Dhanjori eugeosyncline and its bearing on the stratigraphy of Singhbhum, Keonjhar and Mayurbhanj. Wadia commemorative volume, Mining, Geology and Metallurgical Institute of India, 138–62.Google Scholar
Iyengar, S. V. P. & Murthy, Y. G. K. 1982. The evolution of Archaean–Proterozoic crust in parts of Bihar and Orissa, Eastern India. Record, Geological Survey of India 112(3), 15.Google Scholar
Iyengar, S. V. P., Chandy, K. C. & Narayanaswamy, R. 1981. Geochronology and Rb–Sr systematics of the igneous rocks of Simlipal Complex. Orissa. Indian Journal of Earth Sciences 8, 6165.Google Scholar
Kuno, H. 1968. Differentiation of basalt magmas. In Basalts, vol. 2 (eds Hess, H. H. and Poldervaart, A.), pp. 623–88. Wiley.Google Scholar
le Bas, J. M., le Maitre, R. W., Streckeisen, A. & Zanettin, B. 1986. A chemical classification of volcanic rocks based on total alkali-silica diagram. Journal of Petrology 27, 745–50.CrossRefGoogle Scholar
Miyashiro, A. 1975. Classification, characteristics and origin of ophiolites. Journal of Geology 83, 249–81.CrossRefGoogle Scholar
Mukhopadhyay, D. 1976. Precambrian stratigraphy of Singhbhum–The problems and a prospect. Indian Journal of Earth Sciences 3, 208–19.Google Scholar
Mukhopadhyay, D. 1986. The present status of the geology of Eastern Indian Shield. In The Indian Lithosphere (eds Mitra, A. N. and Venkataraman, G. S.), pp. 1539. Indian National Science Academy, New Delhi.Google Scholar
Mukhopadhyay, D. 1988. Precambrian of the Eastern Indian Shield–Perspective of the problems. In Precambrian of Eastern Indian Shield (ed. Mukhopadhyay, D.), pp. 112. Geological Society of India, Memoir 8.Google Scholar
Mullen, E. D. 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62, 5362.CrossRefGoogle Scholar
Murali, A. V., Pavaskar, B., Reddy, G. R., Subba Rao, K. V., Vasudev, V. N. & Sanker Das, M. 1979. Petrogenetic significance of rare earth element patterns of selected samples of Ingaldhal metavolcanics, Karnataka State, India Consortium Studies I. Journal, Geological Society of India 20, 334–38.Google Scholar
Naha, K. & Ghosh, S. K. 1960. Archaean palaeogeography of eastern and northern Singhbhum, Eastern India. Geological Magazine 97, 436–9.CrossRefGoogle Scholar
Pearce, J. A. 1976. Statistical analysis of major element patterns in basalts. Journal of Petrology 17, 1543.CrossRefGoogle Scholar
Pearce, J. A. 1982. Trace element characteristics of lavas from distructive plate boundaries. In Andesites (ed. Thorpe, R. S.), pp. 525–48. John Wiley and Sons.Google Scholar
Pearce, T. H., Gorman, B. E. & Birkett, T. C. 1975. The Tio2-P2O5-K2O diagram–a method of discriminating between oceanic and non-oceanic basalt. Earth and Planetary Science Letters 24, 419–25.CrossRefGoogle Scholar
Perfit, M. R., Gust, D. A., Bence, A. E., Arculus, R. J. & Taylor, S. R. 1980. Chemical characteristic of island arc basalts: implications for mantle sources. Chemical Geology 30, 227–56.CrossRefGoogle Scholar
Pharaoh, T. C., Beckinsale, R. D. & Rickard, D. (eds) 1987. Geochemistry and mineralization of Prolerozoic volcanic suites. Geological Society of London Special Publication no. 33.Google Scholar
Sarkar, A. N. 1982. Precambrian tectonic evolution of eastern India–A model of converging microplates. Tectonophysics 86, 363–97.CrossRefGoogle Scholar
Sarkar, A. N. & Chakraborti, D. K. 1982. One orogenic belt or two? A structural reinterpretation supported by Landsat data products of the Precambrian metamorphics of Singhbhum, Eastern India. Photogrammetria 37, 185201.CrossRefGoogle Scholar
Sarkar, S. N. & Saha, A. K. 1963. On the occurrence of two intersecting orogenic belts in Singhbhum and adjacent areas. Geological Magazine 100, 6992.CrossRefGoogle Scholar
Sarkar, S. N. 1986. Geology and geochemistry of sulphide ore bodies and associated rocks in Mosabani and Rakha mines sections in the Singhbhum Copper Belt. Indian School of Mines Dhanbad, Diamond Jubilee Monograph.Google Scholar
Sarkar, S. N. & Saha, A. K. 1977. The present status of the Precambrian stratigraphy, tectonics and geochronology of Singhbhum – Keonjhar-Mayurbhanj region, Eastern India. Indian Journal of Earth Sciences, S. Ray volume, 3765.Google Scholar
Sarkar, S. N. & Saha, A. K. 1983. Structure and tectonics of Singhbhum – Orissa Iron ore craton, Eastern India. In Recent Researches in Geology, Vol. 10 (ed. Roy, S. Sinha), pp. 125. New Delhi: Hindustan Publishing Company.Google Scholar
Schweitzer, J. & Kroner, A. 1985. Geochemistry and petrogenesis of early Proterozoic intracratonic volcanic rocks of the Ventersdorp Supergroup, South Africa, Chemical Geology 51, 265–88.CrossRefGoogle Scholar
Shervais, J. W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 87, 341–70.Google Scholar