Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T09:37:46.718Z Has data issue: false hasContentIssue false

Influence of Hegenshan–Heihe suture on evolution of late Mesozoic extensional structures in Wunite depression, Erlian Basin, Inner Mongolia, China

Published online by Cambridge University Press:  05 April 2017

QUANYUN MIAO*
Affiliation:
State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, PR China
JIAFU QI*
Affiliation:
State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, PR China
LISHUANG WANG
Affiliation:
State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, PR China
SHUAI ZHANG
Affiliation:
State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, PR China
XIULI WEI
Affiliation:
Exploration Department of PetroChina Huabei Oilfield Company, Renqiu, Hebei 062550, PR China
*
Authors for correspondence: mqycup@163.com; qijiafu@cup.edu.cn
Authors for correspondence: mqycup@163.com; qijiafu@cup.edu.cn

Abstract

We integrate previous work on the Hegenshan–Heihe suture with our interpretation of geomagnetic anomaly and seismic reflection data to investigate the role of the Hegenshan–Heihe suture in the evolution of late Mesozoic extensional structures in the Wunite depression of the Erlian Basin. Sags in the Wunite depression present as NE50° trending in the western sector, N0°–NE30° trending in the central sector and NE45° trending in the eastern sector. Our results highlight the importance of the pre-existing Hegenshan–Heihe suture in the evolution of the late Mesozoic rift system and reveal the following details. (1) The NE50° extent sags in the western sector are controlled by the c. NE50°-trending suture. Moreover, the extensional deformation of the reactivated suture during Early Cretaceous time resulted in a further vertical and horizontal extension of major border faults. (2) The N0°–NE30° extent sags in the central sector are influenced by the c. NE75°-trending suture. The sinistral strike-slip component of the reactivated suture during Early Cretaceous time resulted in a strike rotation of major border faults from NEE-trending (following the suture) to NNE-trending. (3) Because of strike-slip deformation, which resulted from the deformation of the reactivated suture accrued in major border faults, light dip-slip deformation led to less vertical offset. (4) The NE45°-trending sags in the eastern sector are controlled by the c. NE45°-trending suture. Moreover, the extensional deformation of the reactivated suture during Early Cretaceous time facilitated a further vertical and horizontal prolongation of major border faults.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badarch, G., Gunningham, W. D. & Windley, B. F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Science 21, 87110.Google Scholar
Bonini, M., Souriot, T.Boccaletti, M. & Brun, J. P. 1997. Successive orthogonal and oblique extension episodes in a rift zone: laboratory experiments with application to the Ethiopian Rift. Tectonics 16, 347–62.Google Scholar
Chattopadhyay, A. & Chakra, M. 2013. Influence of pre-existing pervasive fabrics on fault patterns during orthogonal and oblique rifting: an experimental approach. Marine and Petroleum Geology 39, 7491.Google Scholar
Chen, Y. & Chen, W. 1997. Mesozoic Volcanic Rocks: Chronology, Geochemistry and Tectonic Background. Beijing: Seismology Press, 279 pp. (in Chinese with English abstract).Google Scholar
Clifton, A. E., Schlische, R. W., Withjack, M. O. & Ackermann, R. V. 2000. Influence on rift obliquity on fault-population systematics: results of experimental clay models. Journal of Structural Geology 22, 1491–509.Google Scholar
Corti, G., Calignano, E., Petit, C. & Sani, F. 2011. Controls of lithospheric structure and plate kinematics on rift architecture and evolution: an experimental modeling of the Baikal rift. Tectonics 30, 7082.Google Scholar
Dewey, J. F. 1977. Suture zone complexities: a review. Tectonophysics 40, 53–7.Google Scholar
Dooley, T., McClay, K. R. & Pascoe, R. 2003. 3D analogue models of variable displacement extensional faults, applications to the Revfallet fault system, offshore mid-Norway. In: New Insights into Structural Interpretation and Modelling (ed. Nieuwland, D. A.), pp. 151–67. Geological Society, London, Special Publication no. 212.Google Scholar
Dou, L. R. 1997. The Lower Cretaceous Petroleum System in NE China. Journal of Petroleum Geology 20, 475–88.Google Scholar
Dou, L. R. & Chang, L. A. 2003. Fault linkage patterns and their control on the formation of the petroleum systems of the Erlian Basin, Eastern China. Marine and Petroleum Geology 20, 1213–24.CrossRefGoogle Scholar
Dunbar, J. A. & Sawyer, D. S. 1988. Continental rifting at pre-existing lithosphere weaknesses. Nature 333, 450–52.Google Scholar
Fei, B. S. 1985. Tectonic evolution of the Erlian Basin and its bearing on oil and gas. Geotectonic et Metallogenia 9, 121–31 (in Chinese with English abstract).Google Scholar
Feng, Z. Q., Liu, Y. J., Han, G. Q., Wen, Q. B., Li, W. M. & Zhang, L. 2014. The petrogenesis of ~330 Ma meta-gabbro-granite from the Tayuan area in the northern segment of the Da Xing'an Mts and its tectonic implication. Acta Petrologica Sinica 30, 1982–94 (in Chinese with English abstract).Google Scholar
Feng, Z. Q., Liu, Y. I., Liu, B. Q., Wen, Q. B., Li, W. M. & Liu, Q. 2016. Timing and nature of the Xinlin-Xiguitu Ocean: constraints from ophiolitic gabbros in the northern Great Xing'an Range, eastern Central Asian Orogenic Belt. International Journal of Earth Sciences 105 (2), 491505.Google Scholar
Ge, W. C., Wu, F. Y., Zhou, C. Y. & Abdel Rahman, A. A. 2005. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Erguna block in the northern part of the Da Xing'an Rang. Chinese Science Bulletin 50, 2097–105 (in Chinese with English abstract).Google Scholar
Graham, S. A., Hendrix, M. S., Johnson, C. L., Badamgarav, D., Badarch, G., Amory, J., Porter, M., Barsbold, R., Webb, L. E. & Hacker, B. R. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. Geological Society of America Bulletin 113, 1560–79.2.0.CO;2>CrossRefGoogle Scholar
Han, G., Liu, Y., Neubauer, F., Bartel, E., Genser, J., Feng, Z., Zhang, L. & Yang, M. 2015. U–Pb age and Hf isotopic data of detrital zircons from the Devonian and Carboniferous sandstones in Yimin area, NE China: new evidences to the collision timing between the Xing'an and Erguna blocks in eastern segment of Central Asian Orogenic Belt. Journal of Asian Earth Sciences 97, 211–28.Google Scholar
Han, G., Liu, Y. J., Neubauer, F., Jin, W., Genser, J., Ren, S. M., Li, W., Wen, Q. B., Zhao, Y. L. & Liang, C. Y. 2012. LA-ICP-MS U–Pb dating and Hf isotopic compositions of detrital zircons from the Permian sandstones in Da Xing'an Mountains, NE China: new evidence for the eastern extension of the Erenhot–Hegenshan suture zone. Journal of Asian Earth Sciences 49, 249–71.Google Scholar
Han, J., Zhou, J. B., Wang, B. & Cao, J. L. 2015. The final collision of the CAOB: constraint from the zircon U–Pb dating of the Linxi Formation, Inner Mongolia. Geoscience Frontiers 6, 211–25.Google Scholar
Higgins, R. L. & Harris, L. B. 1997. The effect of cover composition on extensional faulting above re-activated basement faults: results from analogue modeling. Journal of Structural Geology 19, 8998.Google Scholar
Jian, P., Kröner, F., Windley, B. F., Shi, Y. R., Zhang, W., Zhang, L. Q. & Yang, W. R. 2012. Carboniferous and Cretaceous mafic-ultra mafic massifs in Inner Mongolia (China): a SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”. Lithos 1423, 4866.Google Scholar
Jian, P., Liu, D. Y., Kröner, A., Windley, B. F., Shi, Y. R., Zhang, W., Zhang, F. Q., Miao, L. C., Zhang, L. Q. & Tomurhuu, D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118, 169–90.Google Scholar
Jutz, S. L. & Chorowicz, J. 2010. Geological mapping and detection of oblique extensional structures in the Kenyan Rift Valley with a SPOT/Landsat-TM datamerge. Australian Journal of Earth Science 14, 1677–88.Google Scholar
Keep, M. & McClay, K. R. 1997. Analogue modeling of multiphase rift systems. Tectonophysics 273, 239–70.Google Scholar
Kuang, H. W., Liu, Y. Q., Liu, Y. X., Peng, N., Xu, H., Dong, C., Liu, H., Xu, J. L. & Xue, P. L. 2013. Stratigraphy and depositional palaeogeography of the Early Cretaceous basins in Da Hinggan Mountains–Mongolia orogenic belt and its neighboring areas. Geological Bulletin of China 32, 1063–84 (in Chinese with English abstract).Google Scholar
Lasky, R. P. & Glikson, A. Y. 2011. Gnargoo: a possible 75 km-diameter post-Early Permian–pre-Cretaceous buried impact structure, Carnarvon Basin, Western Australia. Australian Journal of Earth Science 48, 131–49.Google Scholar
Li, C., Xiao, W. J., Han, C. M., Zhou, K. F., Zhang, J. E. & Zhang, Z. X. 2014. Late Devonian–early Permian accretionary orogenesis along the North Tianshan in the southern Central Asian Orogenic Belt. Australian Journal of Earth Science 57, 1023–50.Google Scholar
Li, J. Y. 1998. Some new ideas on tectonics of NE China and its neighboring areas. Geological Review 44, 339–47 (in Chinese with English abstract).Google Scholar
Li, J. Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences 26, 207–24.Google Scholar
Li, J. Y., Zhang, J., Yang, T. N., Li, Y. P., Sun, G. H., Zhu, Z. X. & Wang, L. J. 2009. Crustal tectonic division and evolution of the southern part of the North Asian Orogenic Region and its adjacent areas. Journal of Jilin University (Earth Science Edition) 39, 584–05 (in Chinese with English abstract).Google Scholar
Li, S. T., Lu, F. X. & Lin, C. S. 1997. Evolution of Mesozoic and Cenozoic Basins in Eastern China and their Geodynamic Background. Wuhan: China University of Geosciences Press, 239 pp. (in Chinese with English abstract).Google Scholar
Lin, C. S., Eriksson, K., Li, S. T., Wang, Y. X., Ren, J. Y. & Zhang, Y. M. 2001. Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian Basin, northeast China. AAPG Bulletin 85, 2017–43.Google Scholar
Liu, Y. J., Li, W. M., Feng, Z. Q., Wen, Q. B., Neubauer, F. & Liang, C. Y. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research 43, 123–48.Google Scholar
Luo, Z.L., Li, J.M. & Liu, S.G. 2005. Plate Tectonics and Analysis of Petroliferous Basins in China. Beijing: Petroleum Industry Press, 643 pp. (in Chinese with English abstract).Google Scholar
Ma, X. Y., Liu, H. F., Wang, W. X. & Wang, Y. P. 1983. Meso-Cenozoic taphrogeny and extensional tectonics in eastern China. Acta Geologica Sinica 56, 2232.Google Scholar
McClay, K. R. & White, M. J. 1995. Analogue modeling of orthogonal and oblique rifting. Marine and Petroleum Geology 12, 137–51.Google Scholar
McConnell, R. B. 1972. Geological development of the rift system of eastern Africa. Geological Society of America Bulletin 83, 2549–72.Google Scholar
Meng, Q. A., Zhu, D. F., Chen, J. L. & Qi, J. F. 2012. Styles of complex faulted sags in rifting basin and its significance for petroleum geology: an example from Hailar–Tamsag Early Cretaceous Basin. Earth Science Frontiers 19, 7685 (in Chinese with English abstract).Google Scholar
Meng, Q. R. 2003. What drove late Mesozoic extension of the northern China–Mongolia tract? Tectonophysics 369, 155–74.Google Scholar
Meng, Q. R., Hu, J. M., Jin, J. Q., Zhang, Y. & Xu, D. F. 2003. Tectonics of the late Mesozoic wide extensional basin system in the China–Mongolia border region. Basin Research 15, 397415.Google Scholar
Meng, Q. R., Hu, J. M., Yuan, X. J. & Qin, J. Q. 2002. Structure, evolution and origin of Late Mesozoic extensional basins in the China–Mongolia border region. Geological Bulletin of China 21, 224–31 (in Chinese with English abstract).Google Scholar
Meng, Q. R., Wei, H. H., Wu, G. L. & Duan, L. 2013. Early Mesozoic tectonics settings of the northern North China Craton. Tectonophysics 611, 155–66.Google Scholar
Miao, L. C., Fan, W. M., Liu, D. Y., Zhang, F. Q., Shi, Y. R. & Guo, F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia–Daxinganling Orogenic belt, China. Journal of Asian Earth Sciences 32, 348–70.Google Scholar
Miao, L. C., Fan, W. M., Zhang, F. Q., Liu, D. Y., Jian, P., Shi, G. H., Tao, H. & Shi, Y. R. 2004. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing'an Range, and its geological implications. Chinese Science Bulletin 49, 201–9.Google Scholar
Miao, L. C., Liu, D. Y., Zhang, F. Q., Fan, W. M., Shi, Y. R. & Xie, H. Q. 2007. Zircon SHRIMP U–Pb ages of the “Xinghuadukou Group” in Hanjiayuanzi and Xinlin areas and the “Zhalantun Group” in Inner Mongolia, Da Hinggan Mountains. Chinese Science Bulletin 52, 1112–24.Google Scholar
Milani, E. J. & Davison, I. 1988. Basement control and transfer tectonics in the Recôncavo–Tucano–Jatobá rift, Northeast Brazil. Tectonophysics 154, 41–50, 5370.CrossRefGoogle Scholar
Morley, C. K. 1999. How successful are analogue models in addressing the influence of pre-existing fabrics on rift structure? Journal of Structural Geology 21, 1267–74.Google Scholar
Morley, C. K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A. & Wonganan, N. 2004. Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand. Journal of Structural Geology 26, 1803–29.Google Scholar
Nozaka, T. & Liu, Y. 2002. Petrology of the Hegenshan ophiolite and its implications for the tectonic evolution of northern China. Earth and Planetary Science Letters 202, 89104.Google Scholar
Qi, J. F., Zhao, X. Z., Li, X. P., Yang, M. H., Xiao, Y., Yu, F. S. & Dong, Y. Q. 2015. The distribution and relationship between Early Cretaceous sags and their relationship with basement structure within Erlian Basin. Earth Science Frontiers 22, 118–28 (in Chinese with English abstract).Google Scholar
Quinlan, G., Walsh, J., Skogseid, J., Sassi, W., Cloetingh, S., Lobkovsky, L., Bois, C., Stel, H. & Banda, E. 1993. Relationship between deeper lithospheric processes and near-surface tectonics of sedimentary basins. Tectonophysics 226, 217–25.Google Scholar
Ratschbacher, L., Hacker, B. R., Webb, L. E., Mcwilliams, M., Ireland, T., Dong, S., Calvert, A., Chateigner, D. & Wenk, H. R. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan–Lu fault. Journal of Geophysical Research, Solid Earth 105, 13303–38.Google Scholar
Ren, J. Y., Li, S. T. & Jiao, G. H. 1998. Extensional tectonic system of Erlian Fault Basin Group and its deep background. Earth Science–Journal of China University of Geosciences 23, 567–72 (in Chinese with English abstract).Google Scholar
Robinson, P. T., Bai, W. J., Yang, J. S., Hu, X. F. & Zhou, M. F. 1995. Geochemical constraints on the petrogenesis and crustal accretion of the Hegenshan Ophiolite, northern China. Acta Petrologica Sinica 11, 112–24 (in Chinese with English abstract).Google Scholar
Robinson, P. T., Zhou, M. F., Hu, X. F., Reynolds, P. & Bai, W. J. 1999. Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences 17, 423–42.Google Scholar
Rosenberg, C. L., Brun, J. P., Cagnard, F. & Gapais, D. 2007. Oblique indentation in the Eastern Alps: insights from laboratory experiments. Tectonics 26, 123.CrossRefGoogle Scholar
Schlische, R. W., Withjack, M. O. & Eisenstakt, G. 2002. An experimental study of the secondary deformation produced by oblique-slip normal faulting. AAPG Bulletin 86, 885906.Google Scholar
Scholz, C. H. & Contreras, J. C. 1998. Mechanics of continental rift architecture. Geology 26, 967–70.Google Scholar
Şengör, A. M. C. 1992. The Paleo-Tethyan suture: a line of demarcation between two fundamentally different architectural styles in the structure of Asia. Island Arc 1, 7891.Google Scholar
Sengör, A. M. C., Natal'in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299307.Google Scholar
Shao, J. A., Mu, B. L. & Zhang, L. Q. 2000. Deep geological process and its shallow response during Mesozoic transfer of tectonic frameworks in eastern North China. Geological Review 46, 3240 (in Chinese with English abstract).Google Scholar
Shi, Y. R., Anderson, J. L., Li, L. L., Ding, J., Zhang, W. & Shen, C. H. 2016. Zircon ages and Hf isotopic compositions of Permian and Triassic A-type granites from central Inner Mongolia and their significance for late Paleozoic and early Mesozoic evolution of the Central Asian Orogenic Belt. Australian Journal of Earth Science 58, 967–82.Google Scholar
Song, J. & Dou, L. 1997. Mesozoic–Cenozoic Tectonics of Petroliferous Basins in Eastern China and their Petroleum Systems. Beijing: Petroleum Industry Press, 182 pp. (in Chinese with English abstract).Google Scholar
Su, B. X., Qin, K. Z., Sakyi, P. A., Malaviarachchi, S. P. K., Liu, P. P., Tang, D. M., Xiao, Q. H., Sun, H., Ma, Y. G. & Mao, Q. 2012. Occurrence of an Alaskan-type complex in the Middle Tianshan Massif, Central Asian Orogenic Belt: inferences from petrological and mineralogical studies. Australian Journal of Earth Science 54, 249–69.Google Scholar
Sun, D. Y., Wu, F. Y., Zhang, Y. B. & Gao, S. 2004. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone: evidence from the Dayushan granitic pluton, Jilin Province. Journal of Jilin University (Earth Science Edition) 34, 174–81 (in Chinese with English abstract).Google Scholar
Sun, W., Chi, X. G., Zhao, Z., Pan, S. Y., Liu, J. F., Zhang, R. & Quan, J. Y. 2014. Zircon geochronology constraints on the age and nature of ‘Precambrian metamorphic rocks’ in the Xing'an block of Northeast China. International Geology Review 56 (6), 672–94.Google Scholar
Sun, Y. W., Li, M. S., Ge, W. C., Zhang, Y. L. & Zhang, D. J. 2013. Eastward termination of the Solonker–Xar Moron River Suture determined by detrital zircon U–Pb isotopic dating and Permian floristics. Journal of Asian Earth Sciences 75, 243–50.Google Scholar
Tong, H. M. & Yin, A. 2011. Reactivation tendency analysis: a theory for predicting the temporal evolution of pre-existing weakness under uniform stress state. Tectonophysics 503, 195200.Google Scholar
Tong, H. M., Koyi, H., Huang, S. & Zhao, H. T. 2014. The effect of multiple pre-existing weaknesses on formation and evolution of faults in extended sandbox models. Tectonophysics 626, 197212.Google Scholar
Tortorici, L., Catalano, S. & Carmelo, M. 2008. Phiolite-bearing mélanges in southern Italy. Geological Journal 44, 153–66.Google Scholar
Traynor, J. J. & Sladen, C. 1995. Tectonic and stratigraphic evolution of the Mongolian People's Republic and its influence on hydrocarbon geology and potential. Marine and Petroleum Geology 12, 35–2.Google Scholar
Wang, F., Zhou, X. H., Zhang, L. C., Ying, J. F., Zhang, Y. T., Wu, F. Y. & Zhu, R. X. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters 251, 179198.Google Scholar
Wang, T. 1986. A preliminary study on the Erlian Basin characteristics for structural petroleum geological. Experimental Petroleum Geology 8, 313324 (in Chinese with English abstract).Google Scholar
Wang, T., Zheng, Y. D., Zhang, J. J., Wang, X. S., Zeng, L. S. & Tong, Y. 2007. Some problems in the study of Mesozoic extensional structure in the North China Craton and its significance for the study of lithospheric thinning. Geological Bulletin of China 26, 11541166 (in Chinese with English abstract).Google Scholar
Wang, Y. D., Sun, F. Y., Li, L., Li, R. H., Wang, J. & Xin, W. 2015. Geochronology, geochemistry, and geological implications of late Carboniferous–early Permian mafic and felsic intrusive rocks from Urad Zhongqi, western Inner Mongolia. Geological Magazine 152, 1057–72.Google Scholar
Wang, Y. J. & Fan, Z. Y. 1997. Discovery of Permian radiolarians in Ophiolite Belt on northern side of Xar Moron River, Nei Monggol and its geological significance. Acta Palaeontologica Sinica 36, 5869 (in Chinese with English abstract).Google Scholar
Watson, M. P., Hayward, A. B., Parkinson, D. N. & Zhang, Z. M. 1987. Plate tectonic history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology 4, 205–25.Google Scholar
Webb, L. E., Graham, S. A., Johnson, C. L., Badarch, G. & Hendrix, M. S. 1999. Occurrence, age, and implications of the Yagan–Onch Hayrhan metamorphic ocre complex southern Mongolia, Geology 27, 143–46.Google Scholar
Wilhem, C., Windley, B. F. & Stampfli, G. M. 2012. The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth-Science Reviews 113, 303–41.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W. J., Kröner, A. & Bombosuren, B. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164, 3147.Google Scholar
Withjack, M. O. & Jamison, W. R. 1986. Deformation produced by oblique rifting. Tectonophysics 126, 99124.Google Scholar
Wu, F. Y., Sun, D. Y. & Lin, Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in the northeast China. Acta Petrologica Sinica 15, 181–9.Google Scholar
Wu, F. Y., Yang, J. H., Lo, C. H., Wilde, S. A., San, D. Y. & Jahn, B. M. 2007. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc 16, 156–72.Google Scholar
Xiao, A. C., Yang, S. F. & Chen, H. L. 2001. Geodynamic background on formation of Erlian Basin. Oil & Gas Geology 22, 137–40 (in Chinese with English abstract).Google Scholar
Xiao, W., Sun, M. & Santosh, M. 2015. Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt. Geoscience Frontiers 6, 137–40.Google Scholar
Xiao, W. J., Han, C. M., Liu, W., Wan, B., Zhang, J. E., Ao, S. J., Zhang, Z. Y., Song, D. F., Tian, Z. H. & Luo, J. 2014. How many sutures in the southern Central Asian Orogenic Belt: insights from East Xinjiang–West Gansu (NW China)? Geoscience Frontiers 5, 525–36.Google Scholar
Xiao, W. J., Kröner, A. & Windley, B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences 98, 1185–8.Google Scholar
Xiao, W. J., Windley, B. F., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permain Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22, 288308.Google Scholar
Xu, B., Zhao, P., Wang, Y. Y., Liao, W., Luo, Z.W., Bao, Q. Z. & Zhou, Y. H. 2015. The pre-Devonian tectonic framework of Xing'an–Mongolia orogenic belt (XMOB) in north China. Journal of Asian Earth Sciences 97, 183–96.Google Scholar
Yu, Y. T. 1990. Evolution characteristics of Erlian Basin and the distribution of oil and gas deposits. Acta Petrolei Sinica 11, 1220 (in Chinese with English abstract).Google Scholar
Zeng, Q. D., Liu, J. M., Chu, S. X., Wang, Y. B., Sun, Y., Duan, X. X. & Zhou, L. L. 2012. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, northeast China: characteristics and tectonic setting. Australian Journal of Earth Science 54, 1843–69.Google Scholar
Zhang, L., Liu, Y. J., Li, W. M., Han, G. Q., Zhang, J. D., Guo, Q. Y. & Li, C. H. 2013. Discussion of the basement properties and east boundary of the Erngun massif. Chinese Journal of Geology 48, 227–44 (in Chinese with English abstract).Google Scholar
Zhang, S., Gao, R., Li, H., Hou, H. S., Wu, H. C., Li, W. S., Yang, K., Li, C., Li, W. H., Zhang, J. S., Yang, T. S., Keller, G. R. & Liu, M. 2014. Crustal structures revealed from a deep seismic reflection profile across the Solonker suture zone of the Central Asian Orogenic Belt, northern China: an integrated interpretation. Tectonophysics 612–3, 2639.Google Scholar
Zhang, W. C. 1998. Sedimentary facies and hydrocarbon-bearing of Lower Cretaceous strata in Erlian Basin. Scientia Geologica Sinica 33, 204–13.Google Scholar
Zhang, X. Z., Yang, B. J., Wu, F. Y. & Liu, X. G. 2006. The lithosphere structure in the Hingmong-Jihei (Hinggan-Mongolia-Heilongjiang) region, northeastern China. Geology in China 33, 816–23 (in Chinese with English abstract).Google Scholar
Zhang, Y. X., Sun, Y. S., Zhang, X. Z., Yang, B. J. & Jin, X. 1994. The 1:1,000,000 Specification of the Manzhouli–Suifenhe Geotransect. Beijing: Geological Publishing House, 53 pp. (in Chinese with English abstract).Google Scholar
Zheng, Y. D., Wang, S. Z. & Wang, Y. F. 1991. An enormous thrust nappe and extensional metamorphic core complex newly discovered in Sino–Mongolian boundary area. Science in China Series B 34, 1145–52.Google Scholar
Zhou, J. B., Cao, J. L, Wilde, S. M., Zhao, G. C., Zhang, J. J. & Wang, B. 2014. Paleo-Pacific subduction-accretion: evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics 33, 2444–66.Google Scholar
Zhou, J. B., Han, J., Zhao, G. C., Zhang, X. Z., Cao, J. L., Wang, B. & Pei, S. H. 2015. The emplacement time of the Hegenshan ophiolite: constraints from the unconformably overlying Paleozoic strata. Tectonophysics 662, 398415.Google Scholar
Zhou, J. B., Wilde, S. A., Zhang, X. Z., Ren, S. M. & Zheng, C. Q. 2011. Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing'an Rang, NE China: evidence for the timing of magmatic and metamorphic events and their tectonic implications. Tectonophysics 499, 105–17.Google Scholar
Zhu, D., Wu, Z., Cui, S., Wu, G., Ma, Y. Y. & Feng, X. 1999. Features of Mesozoic magmatic activities in the Yanshan area and their relation to intracontinental orogenesis. Geological Review 45, 165–72.Google Scholar