Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T17:13:31.531Z Has data issue: false hasContentIssue false

Magnesian andesites from the island of Skyros, Greece: geochemistry and regional significance

Published online by Cambridge University Press:  01 May 2009

G. Pe-Piper
Affiliation:
Department of Geology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada

Abstract

High-magnesian andesites outcrop in a subvolcanic complex in the island of Skyros in the central Aegean Sea. Mineralogical indicators of this high-Mg content include bronzite and clinopyroxene phenocrysts, the former with high Cr2O3, and some phlogopite. Plagioclase (oligoclase–andesine) and Fe–Ti oxides were late phases to appear at the liquidus. Whole-rock geochemistry shows trace element features similar to those of subduction-related rocks. Radiometric dating indicates an early Serravallian (middle Miocene) age, approximately synchronous with the onset of post-orogenic rifting and extension of the Aegean Sea. This tectonic setting is consistent with an origin by adiabatic decompression of mantle peridotite previously modified by subduction-related fluids.

Type
Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bocaletti, M., Manetti, P. & Peccerillo, A. 1974. The Balkanids as an instance of a back-arc thrust belt: possible relation with the Hellenides. Bulletin of the American Geological Society 85, 1077–84.2.0.CO;2>CrossRefGoogle Scholar
Crawford, A. J., Falloon, T. J. & Green, D. H. 1989. Classification, petrogenesis and tectonic setting of boninites. In Boninites and related rocks (ed. Crawford, A. J.), pp. 149. London: Unwin Hyman.Google Scholar
Dallwitz, W. B., Green, D. H. & Thompson, J. E. 1966. Clinoenstatite in a volcanic rock from the Cape Vogel area Papua. Journal of Petrology 7, 375403.CrossRefGoogle Scholar
Fytikas, M., Giuliani, O., Innocenti, F., Manetti, P., Mazzuoli, R., Peccerillo, A. & Villari, L. 1980. Neogene volcanism of the northern and central Aegean region. Annates Géologiques des Pays Helléniques 30, 106–29.Google Scholar
Fytikas, M., Innocenti, F., Manetti, P., Mazzuoli, R., Peccerillo, A. & Villari, L. 1984. Tertiary to Quaternary evolution of volcanism in the Aegean region. Geological Society of London Special Publication 17, 687–99.CrossRefGoogle Scholar
Govindaraju, K. 1989. 1989 compilation of working values and sample description for 272 Geostandards. Geostandards Newsletter 13, 1113.CrossRefGoogle Scholar
Hamm, H. M. & Vieten, K. 1971. Zur Berechnung der Kristall chemischen Formel und des Fe3+-Gebaltes von Klinopyroxen aus Elektronstra-Microanalysen. Neues Jahrbuch Für Mineralogie Monatshefte 7, 310–14.Google Scholar
Harder, H., Jacobshagen, V., Skala, W., Arafeh, M., Berndsen, J., Hofmann, A., Kusserow, H. & Schedler, W. 1983.. Geologische Entwicklung und Struktur der Insel Skyros, Nordsporaden, Griechen-land. Berliner geowiss. Abh. 48, 740.Google Scholar
Kay, R. W. 1978. Aleutian magnesian andesites: melts from subducted Pacific ocean crust. Journal of Volcanology and Geothermal Research 4, 117–32.CrossRefGoogle Scholar
Ktenas, K. 1929. Les limites de la région mixte égéenne. Essai de synthése géologique. Comptes Rendues del' Académie des Sciences de Paris 189, 980.Google Scholar
Le Pichon, X. & Angelier, J. 1981. The Aegean Sea. Philosophical Transactions of the Royal Society of London, Series A, 300, 357–72.Google Scholar
Melentis, J. 1973. Die geologie der insel Skiros. Bulletin of the Geological Society of Greece 10, 298322.Google Scholar
Meulenkamp, J. E., Wortel, M. J. R., Van Wamel, W. A., Spakman, W. & Hoogerduyn Strating, E. 1988. On the Hellenic subduction zone and the geodynamic evolution of Crete, since the Late Middle Miocene. Tectonophysics 146, 203–15.CrossRefGoogle Scholar
Miyashiro, A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science 274, 321–55.CrossRefGoogle Scholar
Nicholls, I. A. 1974. Liquids in equilibrium with peridotitic mineral assemblages at high water pressures. Contributions to Mineralogy and Petrology 45, 289316.CrossRefGoogle Scholar
Pe-Piper, G. 1984. Zoned pyroxenes from shoshonite lavas of Lesbos, Greece: inferences concerning shoshonite petrogenesis. Journal of Petrology 25, 453–72.CrossRefGoogle Scholar
Pe-Piper, G. & Piper, D. J. W., 1989. Spatial and temporal variation in late Cenozoic back-arc volcanic rocks, Aegean Sea region. Tectonophysics 169, 113–34.CrossRefGoogle Scholar
Pe-Piper, G. & Piper, D. J. W. (in press). Geochemical variation with time in the Cenozoic high-K volcanic rocks of the island of Lesbos, Greece. Journal of Volcanology and Geothermal Research.Google Scholar
Schroder, B. 1986. Das postorogene Kanozoikum in Griechenland/Agais. In Geologie von Griechenland, (ed. Jacobshagen, V.), pp. 209–40. Borntraeger, Berlin.Google Scholar
Spakman, W., Wortel, M. J. R. & Vlaar, N. J. 1988. The Hellenic subduction zone: a tomographic image and its geodynamic implications. Geophysical Research Letters 15, 60–3.CrossRefGoogle Scholar
Smith, A. L. & Carmichael, I. S. E. 1968. Quaternary lavas from the southern Cascades, western U.S.A. Contributions to Mineralogy and Petrology 19, 212–38.CrossRefGoogle Scholar
Tatsumi, Y. & Ishizaka, K. 1981. Existence of andesitic primary magma: an example from southwest Japan. Earth and Planetary Science Letters 53, 124–30.CrossRefGoogle Scholar
Tatsumi, Y. & Ishizaka, K. 1982. Origin of high-Magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. Earth and Planetary Science Letters 60, 293304.CrossRefGoogle Scholar
Tatsumi, Y. 1981. Melting experiment on a high-magnesian andesite. Earth and Planetary Science Letters 54, 357–65.CrossRefGoogle Scholar
Tatsumi, Y. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures. Earth and Planetary Science Letters 60, 305–17.CrossRefGoogle Scholar
Thompson, R. N., Morrison, M. A., Hendry, G. L. & Parry, S. J. 1984. An assessment of the relative roles of crust and mantle magma genesis: an elemental approach. Philosophical Transactions of the Royal Society of London, Series A, 310, 549–90.Google Scholar
Umino, S. 1986. Magma mixing in boninite sequence of Chichijima, Bonin Islands. Journal of Volcanology and Geothermal Research 29, 125–57.CrossRefGoogle Scholar
Umino, S. & Kushiro, I. 1989. Experimental studies on boninite petrogenesis. In Boninite and related rocks (ed. Crawford, A.J.), pp. 89111. London: Unwin Hyman.Google Scholar