Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:45:51.588Z Has data issue: false hasContentIssue false

The Maz Metasedimentary Series (Western Sierras Pampeanas, Argentina). A relict basin of the Columbia supercontinent?

Published online by Cambridge University Press:  14 October 2021

C. D. Ramacciotti*
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, X5016CACórdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de investigaciones en Ciencias de la Tierra (CICTERRA), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina
C. Casquet
Affiliation:
Departamento de Mineralogía y Petrología, Universidad Complutense (UCM), 28040Madrid, Spain
E. G. Baldo
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, X5016CACórdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de investigaciones en Ciencias de la Tierra (CICTERRA), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina
R. J. Pankhurst
Affiliation:
Visiting Research Associate, British Geological Survey, Keyworth, NottinghamNG12 5GG, UK
S. O. Verdecchia
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, X5016CACórdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de investigaciones en Ciencias de la Tierra (CICTERRA), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina
C. M. Fanning
Affiliation:
Australian National University, Research School of Earth Sciences, ACT, Canberra, 0200, Australia
J. A. Murra
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, X5016CACórdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de investigaciones en Ciencias de la Tierra (CICTERRA), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina
*
Author for correspondence: C. D. Ramacciotti, Email: carlosramacciotti@yahoo.com.ar

Abstract

The Maz Metasedimentary Series is part of the Maz Complex that crops out in the sierras of Maz and Espinal (Western Sierras Pampeanas) and in the Sierra de Umango (Andean Frontal Cordillera), northwestern Argentina. The Maz Complex is found within a thrust stack of Silurian age, which later underwent open folding. The Maz Metasedimentary Series mainly consists of medium-grade garnet–staurolite–kyanite–sillimanite schists and quartzites, with minor amounts of marble and calc-silicate rocks. Transposed metadacite dykes have been recognized along with amphibolites, metagabbros, metadiorites and orthogneisses. Schist, quartzite and metadacite samples were analysed for SHRIMP U–Pb zircon dating. The Maz Metasedimentary Series is polymetamorphic and records probably three metamorphic events during the Grenvillian orogeny, at c. 1235, 1155 and 1035 Ma, and a younger metamorphism at c. 440–420 Ma resulting from reactivation during the Famatinian orogeny. The sedimentary protoliths were deposited between 1.86 and 1.33–1.26 Ga (the age of the Andean-type Grenvillian magmatism recorded in the Maz Complex), and probably before 1.75 Ga. The main source areas correspond to Palaeoproterozoic and, to a lesser magnitude, Meso-Neoarchaean rocks. The probable depositional age and the detrital zircon age pattern suggest that the Maz Metasedimentary Series was laid down in a basin of the Columbia supercontinent, mainly accreted between 2.1 and 1.8 Ga. The sedimentary sources were diverse, and we hypothesize that deposition took place before Columbia broke up. The Rio Apa block, and the Río de la Plata, Amazonia and proto-Kalahari cratons, which have nearby locations in the palaeogeographic reconstructions, were probably the main blocks that supplied sediments to this basin.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åhäll, KI and Connelly, J (1998) Intermittent 1.53–1.13 Ga magmatism in western Baltica: age constraints and correlations within a postulated supercontinent. Precambrian Research 92, 120.CrossRefGoogle Scholar
Anderson, JL and Morrison, J (1992) The role of anorogenic granites in the Proterozoic crustal development of North America. In Proterozoic Crustal Evolution (ed. Condie, KC), pp. 263–99. Amsterdam: Elsevier.CrossRefGoogle Scholar
Bispo-Santos, F, D’Agrella-Filho, MS, Trindade, RIF, Janikian, L and Reis, NJ (2014) Was there SAMBA in Columbia? Paleomagnetic evidence from 1790 Ma Avanavero mafic sills (northern Amazonian Craton). Precambrian Research 244, 139–55. doi: 10.1016/j.precamres.2013.11.002.CrossRefGoogle Scholar
Boger, SD, Raetz, M, Giles, D, Etchart, E and Fanning, CM (2005) U–Pb data from the Sunsas region of Eastern Bolivia, evidence for an allochthonous origin of the Paragua block. Precambrian Research 139, 121–46.CrossRefGoogle Scholar
Casquet, C, Baldo, EG, Pankhurst, RJ, Rapela, CW, Galindo, C, Fanning, CM and Saavedra, J (2001) Involvement of the Argentine Precordillera terrane in the Famatinian mobile belt: U–Pb SHRIMP and metamorphic evidence from the sierra de Pie de Palo. Geology 29, 703–6. doi: 10.1130/0091-7613(2001)029<0703:IOTAPT>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Casquet, C, Fanning, CM, Galindo, C, Pankhurst, RJ, Rapela, CW and Torres, P (2010) The Arequipa Massif of Peru: new SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian orogen. Journal of South American Earth Sciences 29, 128–42. doi: 10.1016/j.jsames.2009.08.009.CrossRefGoogle Scholar
Casquet, C, Pankhurst, RJ, Fanning, CM, Baldo, EG, Galindo, C, Rapela, CW, González-Casado, JM and Dahlquist, JA (2006) U–Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina): correlation with the Arequipa-Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Research 9, 524–9.CrossRefGoogle Scholar
Casquet, C, Pankhurst, RJ, Rapela, C, Galindo, C, Fanning, CM, Chiaradia, M, Baldo, EG, González-Casado, JM and Dahlquist, JA (2008). The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina–Antofalla block of southern Peru? Implications for Western Gondwana margin evolution. Gondwana Research 13, 163–75. doi: 10.1016/j.gr.2007.04.005.CrossRefGoogle Scholar
Casquet, C, Rapela, CW, Pankhurst, RJ, Baldo, EG, Galindo, C, Fanning, CM, Dahlquist, JA and Saavedra, J (2012) A history of Proterozoic terranes in southern South America: from Rodinia to Gondwana. Geoscience Frontiers 3, 137–45. doi: 10.1016/j.gsf.2011.11.004.CrossRefGoogle Scholar
Casquet, C, Rapela, CW, Pankhurst, RJ, Galindo, C, Dahlquist, J, Baldo, EG, Saavedra, J, González-Casado, JM and Fanning, CM (2005) Grenvillian massif-type anorthosites in the Sierras Pampeanas. Journal of the Geological Society, London 162, 912. doi: 10.1144/0016-764904-100.CrossRefGoogle Scholar
Cawood, PA, Strachan, RA, Pisarevsky, SA, Gladkochub, DP and Murphy, JB (2016) Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles. Earth and Planetary Science Letters 449, 118–26.CrossRefGoogle Scholar
Chaves, AO (2020) Columbia (Nuna) supercontinent with external subduction girdle and concentric accretionary, collisional and intracontinental orogens permeated by large igneous provinces and rifts. Precambrian Research 352, 106017. doi: 10.1016/j.precamres.2020.106017.CrossRefGoogle Scholar
Cheney, ES (1996) Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia. Precambrian Research 79, 324.CrossRefGoogle Scholar
Cingolani, CA (2011) The Tandilia System of Argentina as a southern extension of the Río de la Plata craton: an overview. International Journal of Earth Sciences 100, 221–42.CrossRefGoogle Scholar
Cordani, UG and Teixeira, W (2007) Proterozoic accretionary belts in the Amazonian Craton. In The 4D Framework of Continental Crust (eds Hatcher, RD , Jr, Carlson, MP, McBride, JH and Martinez Catalán, JR), pp. 297320. Geological Society of America Memoirs no. 200.CrossRefGoogle Scholar
Cordani, UG, Teixeira, W, Tassinari, CG, Coutinho, JMV and Ruiz, AS (2010) The Rio Apa craton in Mato Grosso do Sul (Brazil) and northern Paraguay: geochronological evolution, correlations and tectonic implications for Rodinia and Gondwana. American Journal of Science 310, 9811023.CrossRefGoogle Scholar
D’Agrella-Filho, MS, Trindade, RIF, Elming, , Teixeira, W, Yokoyama, E, Tohver, E, Geraldes, MC, Pacca, IIG, Barros, MAS and Ruiz, AS (2012) The 1420 Ma Indiavaí mafic intrusion (SW Amazonian Craton): paleomagnetic results and implications for the Columbia supercontinent. Gondwana Research 22, 956–73. doi: 10.1016/j.gr.2012.02.022.CrossRefGoogle Scholar
Dahlquist, JA, Galindo, C, Morales Cámera, MM, Moreno, JA, Alasino, PH, Basei, MAS and Macchioli Grande, M (2020) A combined zircon Hf isotope and whole-rock Nd and Sr isotopes study of Carboniferous A-type granites, Sierras Pampeanas of Argentina. Journal of South American Earth Sciences 100, 102545. doi: 10.1016/j.jsames.2020.102545.CrossRefGoogle Scholar
Dalziel, IWD (1997) Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin 109, 1642.2.3.CO;2>CrossRefGoogle Scholar
de Kock, MO, Evans, DAD and Beukes, NJ (2009) Validating the existence of Vaalbara in the Neoarchean. Precambrian Research 174, 145–54.CrossRefGoogle Scholar
de Kock, MO, Gumsley, AP, Klausen, MB, Söderlund, U and Djeutchou, C (2018) The Precambrian mafic magmatic record, including large igneous provinces of the Kalahari Craton and its constituents: a paleogeographic review. In Dyke Swarms of the World: A Modern Perspective (eds Srivastava, RK, Ernst, RE and Peng, P), pp. 155214. Singapore: Springer Nature, Singapore. doi: 10.1007/978-981-13-1666-1_5.Google Scholar
Fauqué, L, Limarino, C, Vujovich, G, Fernandes, LAD, Cegarra, M and Ecosteguy, L (2004) Hoja Geológica 2969-IV Villa Unión, provincias de La Rioja y San Juan. Buenos Aires: Instituto de Geologia y Recursos Minerales (Servicio Geologico Minero Argentino), Boletin No. 345. 189 pp.Google Scholar
Faure, G (2001) Origin of Igneous Rocks. The Isotopic Evidence. Berlin: Springer-Verlag, 496 pp.CrossRefGoogle Scholar
Goodge, JW, Williams, IS and Myrow, P (2004) Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the Central Ross orogen, Antarctica: detrital record of rift-, passive-, and active-margin sedimentation. Geological Society of America Bulletin 116, 1253–79. doi: 10.1130/B25347.1.CrossRefGoogle Scholar
Hartmann, LA, Santos, JOS, Cingolani, CA and McNaughton, NJ (2002) Two Palaeoproterozoic orogenies in the evolution of the Tandilia Belt, Buenos Aires, as evidenced by zircon U–Pb SHRIMP geochronology. International Geology Review 44, 528–43.CrossRefGoogle Scholar
Hawkesworth, C, Cawood, P, Kemp, T, Storey, C and Dhuime, B (2009) A matter of preservation. Science 323, 4950.CrossRefGoogle ScholarPubMed
Hoffman, PF (1991) Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252, 1409–12.CrossRefGoogle ScholarPubMed
Jacobs, JS, Pisarevsky, RJ and Thomas, TB (2008) The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Research 160, 142–58. doi: 10.1016/j.precamres.2007.04.022.CrossRefGoogle Scholar
Johansson, Å (2009) Baltica, Amazonia and the SAMBA connection—1000 million years of neighbourhood during the Proterozoic? Precambrian Research 175, 221–34.CrossRefGoogle Scholar
Johansson, Å (2014) From Rodinia to Gondwana with the “SAMBA” model—a distant view from Baltica towards Amazonia and beyond. Precambrian Research 244, 226–35. doi: 10.1016/j.precamres.2013.10.012.CrossRefGoogle Scholar
Johnson, TA, Vervoort, JD, Ramsey, MJ, Southworth, S and Mulcahy, SR (2020) Tectonic evolution of the Grenville Orogen in the central Appalachians. Precambrian Research 346, 105740. doi: 10.1016/j.precamres.2020.105740.CrossRefGoogle Scholar
Kilmurray, JO and Dalla Salda, L (1971) Las fases de deformación y metamorfismo en la Sierra de Maz, provincia de La Rioja, República Argentina. Revista de la Asociación Geológica Argentina 26, 245–63.Google Scholar
Kirkland, CL, Smithies, RH, Taylor, RJM, Evans, N and McDonald, B (2015) Zircon Th/U ratios in magmatic environs. Lithos 212–215, 397414. doi: 10.1016/j.lithos.2014.11.021.CrossRefGoogle Scholar
Kirscher, U, Liu, Y, Li, ZX, Mitchell, RN, Pisarevsky, SA, Denyszyn, SW and Nordsvan, A (2019) Paleomagnetism of the Hart Dolerite (Kimberley, Western Australia)—a two-stage assembly of the supercontinent Nuna? Precambrian Research 329, 170–81.CrossRefGoogle Scholar
Li, ZX, Bogdanova, SV, Collins, AS, Davidson, A, De Waele, B, Ernst, RE, Fitzsimons, ICW, Fuck, RA, Gladkochub, DP, Jacobs, J, Karlstrom, KE, Lu, S, Natapov, LM, Pease, V, Pisarevsky, SA, Thrane, K and Vernikovsky, V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Loewy, SL, Connelly, JN and Dalziel, IWD (2004) An orphaned block: the Arequipa–Antofalla basement of the Central Andean margin of South America. Geological Society of America Bulletin 116, 171–87.CrossRefGoogle Scholar
Lucassen, F and Becchio, R (2003) Timing of high-grade metamorphism: early Palaeozoic U–Pb formation ages of titanite indicate long-standing high-T conditions at the western margin of Gondwana (Argentina, 26–29°S). Journal of Metamorphic Geology 21, 649–62. doi: 10.1046/j.1525-1314.2003.00471.x.CrossRefGoogle Scholar
Ludwig, KR (2003) Isoplot/Ex version 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4.Google Scholar
Lugmair, GW and Carlson, RW (1978) The Sm–Nd history of KREEP. In Proceedings of the Ninth Lunar and Planetary Science Conference, Houston, Texas, pp. 689704.Google Scholar
Martin, EL, Collins, WJ and Spencer, CJ (2019) Laurentian origin of the Cuyania suspect terrane, western Argentina, confirmed by Hf isotopes in zircon. Geological Society of America Bulletin 132, 273–90. doi: 10.1130/B35150.1.CrossRefGoogle Scholar
McDonough, MR, Ramos, VA, Isachsen, CE, Bowring, SA and Vujovich, GI (1993) Edades preliminares de circones del basamento de la Sierra de Pie de Palo, Sierras Pampeanas occidentales de San Juán: sus implicancias para el supercontinente proterozoico de Rodinia. 12th Congreso Geológico Argentino, Actas 3, 340–2.Google Scholar
McLelland, JM, Selleck, BW and Bickford, ME (2010) Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians. In From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region (eds Tollo, RP, Bartholomew, MJ, Hibbard, JP and Karabinos, PM), pp. 2149. Geological Society of America Memoirs no. 206.Google Scholar
Meert, JG (2002) Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia. Gondwana Research 5, 207–15.CrossRefGoogle Scholar
Middlemost, EAK (1985) Magmas and Magmatic Rocks. An Introduction to Igneous Petrology. London, New York: Longman Group Ltd, 266 pp.Google Scholar
Pankhurst, RJ, Ramos, A and Linares, E (2003). Antiquity of the Río de la Plata craton in Tandilia, southern Buenos Aires province, Argentina. Journal of South American Earth Sciences 16, 513.CrossRefGoogle Scholar
Porcher, CC, Fernandes, LAD, Vujovich, GI and Chernicoff, CJ (2004) Thermobarometry, Sm/Nd ages and geophysical evidence for the location of the suture zone between Cuyania and the western Proto-Andean margin of Gondwana. Gondwana Research 7, 1057–76.CrossRefGoogle Scholar
Ramacciotti, CD, Baldo, EG and Casquet, C (2015) U–Pb SHRIMP detrital zircon ages from the Neoproterozoic Difunta Correa Metasedimentary Sequence (Western Sierras Pampeanas, Argentina): provenance and paleogeographic implications. Precambrian Research 270, 3949. doi: 10.1016/j.precamres.2015.09.008.CrossRefGoogle Scholar
Ramos, VA, Dallmeyer, D and Vujovich, G (1998) Time constraints on the Early Paleozoic docking of the Precordillera, Central Argentina. In The Proto-Andean Margin of Gondwana (eds Pankhurst, RJ and Rapela, CW), pp. 143–58. Geological Society of London, Special Publication no. 142.Google Scholar
Rapela, CW, Pankhurst, RJ, Casquet, C, Baldo, EG, Galindo, C, Fanning, CM and Dahlquist, JA (2010) The Western Sierras Pampeanas: protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction and accretion at continental-edge and AMCG intraplate magmatism. Journal of South American Earth Sciences 29, 105–27. doi: 10.1016/j.jsames.2009.08.004.CrossRefGoogle Scholar
Rapela, CW, Pankhurst, RJ, Casquet, C, Fanning, CM, Baldo, EG, González-Casado, J, Galindo, C and Dahlquist, JA (2007) The Río de la Plata Craton and the assembly of SW Gondwana. Earth-Science Reviews 83, 4982. doi: 10.1016/j.earscirev.2007.03.004.CrossRefGoogle Scholar
Rivers, T (1997) Lithotectonic elements of the Grenville Province: review and tectonic implications. Precambrian Research 86, 117–54.CrossRefGoogle Scholar
Rivers, T (2012) Upper-crustal orogenic lid and mid-crustal core complexes: signature of a collapsed orogenic plateau in the hinterland of the Grenville Province. Canadian Journal of Earth Sciences 49, 142.CrossRefGoogle Scholar
Rivers, T (2015) Tectonic setting and evolution of the Grenville Orogen: an assessment of progress over the last 40 years. Geoscience Canada 42, 77124. doi: 10.12789/geocanj.2014.41.057.CrossRefGoogle Scholar
Rogers, JJW and Santosh, M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research 5, 522.CrossRefGoogle Scholar
Rubatto, D (2017) Zircon: the metamorphic mineral. Reviews in Mineralogy and Geochemistry 83, 261–95. doi: 10.2138/rmg.2017.83.9.CrossRefGoogle Scholar
Santos, JOS, Hartmann, LA, Bossi, J, Campal, N, Schipilov, A, Piñeyro, D and McNaughton, NJ (2003) Duration of the trans-Amazonian cycle and its correlation within South America based on U–Pb SHRIMP geochronology of the La Plata Craton, Uruguay. International Geology Review 45, 2748.CrossRefGoogle Scholar
Schröder, S, Beukes, NJ and Armstrong, RA (2016) Detrital zircon constraints on the tectonostratigraphy of the Paleoproterozoic Pretoria Group, South Africa. Precambrian Research 278, 362–93. doi: 10.1016/j.precamres.2016.03.016.CrossRefGoogle Scholar
Teixeira, W, Cordani, UG, Faleiros, FM, Sato, K, Maurer, VC, Ruiz, AS and Azevedo, EJP (2020) The Rio Apa Terrane reviewed: U–Pb zircon geochronology and provenance studies provide paleotectonic links with a growing Proterozoic Amazonia. Earth-Science Reviews 202, 103089. doi: 10.1016/j.earscirev.2020.103089.CrossRefGoogle Scholar
Teixeira, W, D’Agrella-Filho, MD, Hamilton, MA, Ernst, RE, Girardi, VAV, Mazzucchelli, M and Bettencourt, JS (2013) U–Pb (ID-TIMS) baddeleyite ages and paleomagnetism of 1.79 and 1.59 Ga tholeiitic within the Columbia supercontinent dyke swarms, and position of the Rio de la Plata Craton. Lithos 174, 157–74.CrossRefGoogle Scholar
Tholt, A (2018) Metamorphic evolution of the Sierra de Maz: implications for the timing of terrane accretion on the western margin of Gondwana. Master of Science thesis, Western Washington University, Bellingham, United States of America. WWU Graduate School Collection 713. Published thesis. doi: 10.25710/tnwn-4706.CrossRefGoogle Scholar
Thomas, WA and Astini, R (1996) The Argentine Precordillera: a traveler from the Ouachita Embayment of North American Laurentia. Science 273, 752–7. doi: 10.1126/science.273.5276.752.CrossRefGoogle ScholarPubMed
Tohver, E, Bettencourt, JS, Tosdal, R, Mezger, K, Leite, WB and Payolla, BL (2004) Terrane transfer during Grenville orogeny: tracing the Amazonian ancestry of southern Appalachian basement through Pb and Nd isotopes. Earth and Planetary Science Letters 228, 161–76.CrossRefGoogle Scholar
Tohver, E, van der Pluijm, BA, Van der Voo, R, Rizzotto, G and Scandolara, JE (2002) Paleogeography of the Amazon craton at 1.2 Ga: early Grenvillian collision with the Llano segment of Laurentia. Earth and Planetary Science Letters 199, 185200.CrossRefGoogle Scholar
Tollo, RP (2005) Grenvillian Orogeny. In Encyclopedia of Geology (eds Selley, RC, Cocks, LRM and Plimer, IR), pp. 155–65. Amsterdam: Elsevier.CrossRefGoogle Scholar
Tollo, RP, Corriveau, L, McLelland, J and Bartholomew, MJ (2004) Proterozoic tectonic evolution of the Grenville orogen in North America: an introduction. In Proterozoic Tectonic Evolution of the Grenville Orogen in North America (eds Tollo, RP, McLelland, J, Corriveau, L and Bartholomew, MJ), pp. 118. Geological Society of America Memoirs no. 197.CrossRefGoogle Scholar
Varela, R, Basei, MAS, González, PD, Sato, AM, Naipauer, M, Neto, C, Cingolani, M and Meira, CA (2011) Accretion of Grenvillian terranes to the southwestern border of the Río de la Plata craton, western Argentina. International Journal of Earth Sciences 100, 243–72. doi: 10.1007/s0053%201-010-0614-2.CrossRefGoogle Scholar
Vujovich, GI and Kay, SM (1998) A Laurentian? Grenville age oceanic arc/back-arc terrane in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina. In The Proto-Andean Margin of Gondwana (eds Pankhurst, RJ and Rapela, CW), pp. 159–80. Geological Society of London, Special Publication no. 142.Google Scholar
Vujovich, GI, van Staal, CR and Davis, W (2004) Age constraints on the tectonic evolution and provenance of the Pie de Palo Complex, Cuyania composite terrane, and the Famatinian Orogeny in the Sierra de Pie de Palo, San Juan, Argentina. Gondwana Research 7, 1041–56. doi: 10.1016/S1342-937X(05)71083-2.CrossRefGoogle Scholar
Webber, PM (2018) Terrane accretion and translation on the western margin of Gondwana. Master of Science thesis, University of Iowa, Iowa City, United States of America. Published thesis. doi: 10.17077/etd.0ymp2eyn.CrossRefGoogle Scholar
Wiebe, RA (1992) Proterozoic anorthosite complexes. In Proterozoic Crustal Evolution (ed. Condie, KC), pp. 215–62. Amsterdam: Elsevier.CrossRefGoogle Scholar
Williams, IS (1998) U–Th–Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, MA, Shanks, WC , III and Ridley, WI), pp. 135. Reviews in Economic Geology vol. 7.Google Scholar
Zhao, G, Cawood, PA, Wilde, SA and Sun, M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125–62.CrossRefGoogle Scholar
Zhao, G, Sun, M, Wilde, SA and Li, S (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews 67, 91123.CrossRefGoogle Scholar
Supplementary material: File

Ramacciotti et al. supplementary material

Ramacciotti et al. supplementary material 1

Download Ramacciotti et al. supplementary material(File)
File 11.2 KB
Supplementary material: File

Ramacciotti et al. supplementary material

Ramacciotti et al. supplementary material 2

Download Ramacciotti et al. supplementary material(File)
File 90 KB