Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T19:32:50.239Z Has data issue: false hasContentIssue false

Palaeogeography in exploration

Published online by Cambridge University Press:  21 June 2018

PAUL J. MARKWICK*
Affiliation:
Knowing Earth Limited, 22 Bank Parade, Otley LS21 3DY, UK School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1BF, UK
*
*Author for correspondence: paul.markwick@knowing.earth

Abstract

Palaeogeography is the representation of the past surface of the Earth. It provides the spatial context for investigating how the Earth evolves through time, how complex processes interact and the juxtaposition of spatial information. In hydrocarbon exploration, palaeogeographies have been used to map and investigate the juxtaposition, distribution and quality of play elements (source, reservoir, seal and trap), as boundary conditions for source-to-sink analysis, climate modelling and lithofacies retrodiction, but most commonly as the backdrop for presentations and montages. This paper demonstrates how palaeogeography has been and can be used within an exploration workflow to help mitigate exploration risk. A comprehensive workflow for building palaeogeographies is described which is designed to provide a standard approach that can be applied to a range of tasks in exploration and academia. This is drawn from an analysis of the history of palaeogeography and how it has been applied to exploration in the past and why. Map applications, resolution and content depend on where in the exploration and production (E&P) cycle the map is used. This is illustrated here through three case studies, from the strategic decisions of global new ventures exploration to the more detailed basin and petroleum analyses of regional asset teams evaluating basins and plays. Through this, the paper also addresses three commonly asked questions: (1) How can I use palaeogeography in my workflow? (2) How reliable are the maps? (3) How do I build a palaeogeography?

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. E. 1943. Paleogeography and petroleum exploration. Journal of Sedimentary Petrology 13 (3), 108– 11.Google Scholar
Anka, Z., Séranne, M. & di Primio, R. 2010. Evidence of a large upper-Cretaceous depocentre across the Continent-Ocean boundary of the Congo-Angola basin. Implications for palaeo-drainage and potential ultra-deep source rocks. Marine and Petroleum Geology 27, 601–11.Google Scholar
Arldt, T. 1910. Methoden und Bedeutung der Palaögeographie. Petermanns Geographisch. Mitteilungen 5, 229–33.Google Scholar
Arldt, T. 1917–1922. Handbuch der Palaeogeographie. Leipzig: Gebrüder Borntraeger, 1647 pp.Google Scholar
Armentrout, J. M. 2000. Sedimentary Basin Analysis. In AAPG Treatise of Petroleum Geology: Exploring for Oil and Gas Traps (eds Beaumont, E. A. & Foster, N. H.), pp. 4.14.123. Tulsa: American Association of Petroleum Geologists.Google Scholar
Arthur, M. A. & Schlanger, S. O. 1979. Cretaceous “Oceanic Anoxic Events” as causal factors in development of reef-reservoired giant oil fields. American Association of Petroleum Geologists Bulletin 63 (6), 870–85.Google Scholar
Arthur, M. A., Schlanger, S. O. & Jenkyns, H. C. 1987. The Cenomanian–Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. In Marine Petroleum Source Rocks (eds Brooks, J. & Fleet, A. J.), pp. 401–20. Oxford: Blackwell Scientific Publishers.Google Scholar
Ashwal, L. D. & Burke, K. 1989. African lithospheric structure, volcanism, and topography. Earth and Planetary Science Letters 96, 814.Google Scholar
Barron, E. J. 1981. Paleogeography as a climatic forcing factor. Geologische Rundschau 70 (2), 737–47.Google Scholar
Barron, E. J. 1985. Numerical climate modeling, a frontier in Petroleum Source Rock prediction: results based on Cretaceous simulations. American Association of Petroleum Geologists Bulletin 69 (3), 448–59.Google Scholar
Barron, E. J., Harrison, C. G. A., Sloan, J. L. III & Hay, W. W. 1981. Palaeogeography, 180 million years ago to the present. Ecologae Geologicae Helvetica 74, 443–70.Google Scholar
Barron, E. J. & Washington, W. M. 1984. The role of geographic variables in explaining paleoclimates: results from Cretaceous climate model sensitivity studies. Journal of Geophysical Research 89 (D1), 1267–79.Google Scholar
Beudant, F. S. 1846. Corso Elementare di Storia Naturale, ad uso dei Collegi e degli Instituti di Educazione redatto. Mineralogia-Geologia. Milano, 332 pp.Google Scholar
Beudant, F. S. 1872. Cours Élémentaire d'Histoire Naturelle. Géologie, 13th ed. Paris: Victor Masson & Garnier Frères, 348 pp.Google Scholar
Bierman, P. R. & Steig, E. K. 1996. Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surface Processes and Landforms 21, 125–39.Google Scholar
Bohacs, K. M., Norton, I. O., Gilbert, D., Neal, J. E., Kennedy, M., Borkowski, W., Rottman, M. & Burke, T. 2012. The accumulation of organic-matter-rich rocks within an earth systems framework: the integrated roles of plate tectonics, atmosphere, ocean, and biota through the Phanerozoic. In Regional Geology and Tectonics: Principles of Geologic Analysis: Volume 1A (eds Roberts, D. G. & Bally, A. W.), pp. 646–78. Amsterdam: Elsevier.Google Scholar
Bohacs, K. M., West, B. P. & Grabowski, G. Jr. 2010. Retrodicting source-rock quality and paleoenvironmental conditions. Patent Application Number 20100175886. ExxonMobil Upstream Research Company. U.S. Patent & Trademark Office. United States of America.Google Scholar
Bohacs, K. M., West, B. P. & Grabowski, G. Jr. 2011. Predicting source occurrence, character, and distribution in frontier settings using paleo-environmental factors: the SourceRER Modeling System (Source Retrodiction & Environmental Reconstruction). In Source Rocks: Character, Prediction and Value. 12–13 September 2011, pp. 78. London: Geological Society of London.Google Scholar
Bohacs, K. M., West, B. P. & Grabowski, G. Jr. 2013. Application of the SourceRER modeling system (source retrodiction & environmental reconstruction) to unconventional reservoirs: estimating mudstone character and distribution using paleo-environmental factors. AAPG Search and Discovery Article #120117. 6 pp.Google Scholar
Bois, C., Bouche, P. & Pelet, R. 1982. Global geologic history and distribution of hydrocarbon reserves. The American Association of Petroleum Geologists Bulletin 66 (9), 1248–70.Google Scholar
Boyd, R., Dalrymple, R. W. & Zaitlin, B. A. 1992. Classification of clastic coastal depositional environments. Sedimentary Geology 80 (3–4), 139–50.Google Scholar
BRGM (Bureau de Recherches Géologiques et Minières) & IGME (Instituto Geológico y Minero). 2008. Carte géologique des Pyrénées à 1:400 000 (Mapa geológico de los Pirineos a escala) Orléans & Madrid. Orléans: BRGM; Madrid: IGME.Google Scholar
Brongersma-Sanders, M. 1967. Permian wind and the occurrence of fish and metals in the Kupferschiefer and Marl Slate. In Proceedings of 15th Inter-University Geological Congress, pp. 61–71. University of Leicester.Google Scholar
Brown, R., Raab, M. J. & Gallagher, K. 2006. Geodynamics, geomorphology and denudation rates across Africa. Geophysical Research Abstracts 8, 11084.Google Scholar
Brownfield, M. E. & Charpentier, R. R. 2006. Geology and total petroleum systems of the West-Central Coastal Province (7203), West Africa. United States Geological Survey Bulletin 2207-B, 152.Google Scholar
Bullard, E., Everett, J. E. & Smith, A. G. 1965. The fit of the continents around the Atlantic. Philosophical Transactions of the Royal Society of London, Series A 258 (1088), 4151.Google Scholar
Burggraf, D. R., Harris, J. P., Suter, J., Stronach, N., Huizinga, B. J., Crossley, R., Markwick, P. J., Ghazi, S., Hudson, T., Valdes, P. J. & Proctor, R. 2006. Coupled ocean-atmosphere global paleo-climate modeling for source rock prediction in frontier basins. In AAPG Annual Convention, April 9–12, 2006, Houston, Texas. AAPG Search and Discovery Article #90052.Google Scholar
Burov, E. B. & Watts, A. B. 2006. The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”? GSA Today 16 (1), 410.Google Scholar
Campanile, D., Nambiar, C. G., Bishop, P., Widdowson, M. & Brown, R. 2007. Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin. Basin Research 20 (1), 322.Google Scholar
Carroll, A. R. & Bohacs, K. M. 2001. Lake-type controls on petroleum source rock potential in nonmarine basins. American Association of Petroleum Geologists Bulletin 85 (6), 1033–53.Google Scholar
Censier, C. 1990. Characteristics of Mesozoic fluvio-lacustrine formations of the western Central African Republic (Carnot Sandstones) by means of mineralogical and exoscopic analyses of detrital material. Journal of African Earth Sciences 10 (1/2), 385–98.Google Scholar
Censier, C. & Lang, J. 1999. Sedimentary processes in the Carnot Formation (Central African Republic) related to the palaeogeographic framework of central Africa. Sedimentary Geology 127, 4764.Google Scholar
Cloetingh, S., Catalano, R., D'Argenio, B., Sassi, W. & Horvath, F. 1999. Basin dynamics and basin fill: models and constraints. Tectonophysics 315, 113.Google Scholar
Cloetingh, S., Burov, E., Matenco, L., Beekman, F., Roure, F. & Ziegler, P. A. 2013. The Moho in extensional tectonic settings: insights from thermo-mechanical models. Tectonophysics 609, 558604.Google Scholar
Cushing, D. H. 1971. Upwelling and the production of fish. Advances in Marine Biology 9, 255334.Google Scholar
Dacqué, E. 1915. Grundlagen und Methoden der Paläogeographie. Jena, Germany: Verlag von Gustav Fischer, 499 pp.Google Scholar
Demaison, G. J. & Moore, G. T. 1980. Anoxic environments and oil source bed genesis. Organic Geochemistry 2, 931.Google Scholar
Dietz, R. S. 1961. Continent and ocean basin evolution by spreading of the sea floor. Nature 190, 854–57.Google Scholar
Dolson, J. 2016. Understanding Oil and Gas Shows and Seals in the Search for Hydrocarbons. Switzerland: Springer International Publishing, 486 pp.Google Scholar
Doré, A. G. 1991. The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 441–92.Google Scholar
Drewry, G. E., Ramsay, A. T. S. & Smith, A. G. 1974. Climatically controlled sediments, the geomagnetic field, and trade wind belts in Phanerozoic time. The Journal of Geology 82 (5), 531–53.Google Scholar
Du Toit, A. L. 1937. Our Wandering Continents – An Hypothesis of Continental Drifting, 1st ed. Edinburgh: Oliver and Boyd, 366 pp.Google Scholar
Emery, K. O. & Milliman, J. D. 1978. Suspended matter in surface waters: influence of river discharge and of upwelling. Sedimentology 25, 125–40.Google Scholar
ESRI. 2017. ArcGIS Desktop. Redlands, California: Environmental Systems Research Institute.Google Scholar
Flament, N., Gurnis, M., Müller, D. R., Bower, D. J. & Husson, L. 2015. Influence of subduction history on South American topography. Earth and Planetary Science Letters 430, 918.Google Scholar
Fraticelli, C. M., West, B. P., Bohacs, K., Patterson, P. E. & Heins, W. A. 2004. Vegetation-precipitation interactions drive paleoenvironmental evolution. Eos Transactions of the American Geophysical Union, Fall Meeting Supplement 85 (47). Abstract H54A-06.Google Scholar
Gallacher, R. J. & Bastow, I. D. 2012. The development of magmatism along the Cameroon Volcanic Line: Evidence from teleseismic receiver functions. Tectonics 31, TC3018. doi: 10.1029/2011TC003028.Google Scholar
Gallagher, K. & Brown, R. 1999. Denudation and uplift at passive margins: the record on the Atlantic margin of southern Africa. Philosophical Transactions of the Royal Society of London, Series A 357, 835–59.Google Scholar
Galsworthy, A., Raynham, L., Markwick, P. J., Campanile, D., Bailiff, R., Benny, K. E., Harland, M., Eue, D., Bonne, K., Hagen, L., Edgecombe, E. & Wrobel, N. 2011. A new model of the palaeogeographic and tectonic evolution of Tethys from 150 Ma to Present: implications for depositional systems and source-to-sink relationships. In AAPG International Conference and Exhibition, 23–26 October 2011, Milan, Italy. AAPG Search and Discovery Article #90135.Google Scholar
Gawthorpe, R. L. & Leeder, M. R. 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research 12 (3-4), 195218.Google Scholar
Giresse, P. 1982. La succession des sédimentations dans les bassins marins et continentaux du Congo depuis le déput du Mésozoïque. Sciences Géologiques Bulletin 35 (4), 183206.Google Scholar
Giresse, P. 1990. Paleoclimatic and structural environment at the end of the Cretaceous along the western flank of the Congo Basin, with application of underground microdiamonds around Brazzaville. Journal of African Earth Sciences 10 (1/2), 399408.Google Scholar
Giresse, P. 2005. Mesozoic–Cenozoic history of the Congo Basin. Journal of African Earth Sciences 43, 301–15.Google Scholar
Golonka, J. 2011. Chapter 6. Phanerozoic palaeoenvironment and palaeolithofacies maps of the Arctic region. In Arctic Petroleum Geology (eds Spencer, A. M., Embry, A. F., Gautier, D. L., Stoupakova, A. V. & Sørensen, K.), pp. 79129. Geological Society of London, Memoirs no. 35.Google Scholar
Golonka, J., Ross, M. I. & Scotese, C. R. 1994. Phanerozoic paleogeographic and paleoclimatic modeling maps. In Pangea: Global Environments and Resources (eds Embry, A. F., Beauchamp, B. & Glass, D. J.), pp. 147. Canadian Society of Petroleum Geologists, Memoir 17.Google Scholar
Golonka, J. & Scotese, C. R. 1994. Phanerozoic paleogeographic maps of Arctic margins. In International Conference on Arctic Margins (ed. Thurston, D. K.), pp. 115. Magadan: Russian Academy of Sciences.Google Scholar
Golonka, J., Scotese, C. R. & Ross, M. I. 1993. Phanerozoic paleoclimatic modeling maps. In First International Symposium on Carboniferous to Jurassic Pangea (eds Beauchamp, B., Embry, A. F. & Glass, D.), p. 114. Calgary: Canadian Society of Petroleum Geologists.Google Scholar
Goudie, A. S. 2005. The drainage of Africa since the Cretaceous. Geomorphology 67, 437–56.Google Scholar
Gurnis, M., Mitrovica, J. X., Ritsema, J. & Van Heijst, H.-J. 2000. Constraining mantle density structure using geological evidence of surface uplift rates: the case of the African superplume. Geochemistry, Geophysics, Geosystems 1, doi: 10.1029/1999GC000035.Google Scholar
Gyllenhaal, E. D., Engberts, C. J., Markwick, P. J., Smith, L. H. & Patzkowsky, M. E. 1991. The Fujita-Ziegler model: a new semi-quantitative technique for estimating paleoclimate from paleogeographic maps. Palaeogeography, Palaeoclimatology, Palaeoecology 86, 4166.Google Scholar
Haq, B. U. & Al-Qahtani, A. M. 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10 (2), 127–60.Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1987. Chronology of fluctuating sea level since the Triassic. Science 235, 1156–67.Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In Sea-Level Changes: An Integrated Approach (ed. Wilgus, C. K.), pp. 71108. Tulsa: Society of Economic Paleontologists and Mineralogists.Google Scholar
Harris, J., Ashley, A., Otto, S., Crossley, R., Preston, R., Watson, J., Goodrich, M., Team, Merlin+ Project & Valdes, P. J. 2017. Paleogeography and paleo-Earth systems in the modeling of marine paleoproductivity: a prerequisite for the prediction of petroleum source rocks. In Petroleum System Case Studies (eds AbuAli, M. & Moretti, I.), pp. 3760. American Association of Petroleum Geologists, Memoir 114.Google Scholar
Harris, J. P., Crossley, R., Richards, F., Stronach, N., Hudson, T., Burggraf, D. R., Suter, J., Huizinga, B. J., Ghazi, S., Markwick, P. J., Valdes, P. & Proctor, R. 2006. Palaeogeographic and geological constraints on coupled ocean-atmosphere palaeo-earth systems modeling for source rock prediction in frontier basins. In AAPG International Conference and Exhibition, 5–8, November 2006, Perth, West Australia. AAPG Search and Discovery Article #90061.Google Scholar
Harris, N. B., Hegarty, K. A., Green, P. F. & Duddy, I. R. 2002. Distribution, timing and intensity of major tectonic events on the West African margin from Gabon to Namibia: results of a regional apatite fission track study. In AAPG Annual Meeting, March 1–13, 2002, Houston, Texas. AAPG Search and Discovery Article #90007.Google Scholar
Heins, W. A. & Kairo, S. 2007. Predicting sand character with integrated genetic analysis. In Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry (eds Arribas, J., Critelli, S. & Johnsson, M. J.), pp. 345–79. Boulder: Geological Society of America.Google Scholar
Heine, C., Müller, R. D., Steinberger, B. & DiCaprio, L. 2010. Integrating deep Earth dynamics in paleogeographic reconstructions of Australia. Tectonophysics 483 (1–2), 135–50.Google Scholar
Helland-Hansen, W., Sømme, T. O., Martinsen, O. J. & Thurmond, J. B. 2016. Deciphering Earth's natural hourglasses: perspectives on source-to-sink analysis. Journal of Sedimentary Research 86, 1008–33.Google Scholar
Hess, H. H. 1962. History of ocean basins. In Petrologic Studies: A Volume to Honor A. F. Buddington (eds Engel, A. E. J., James, H. L. & Leonard, B. F.), pp. 599620. New York: Geological Society of America.Google Scholar
Hodgson, D. 2014. New plays from old: frontier exploration at the western edge of Gabon's salt basin. GEOExPro 11 (2), 3840.Google Scholar
Hodgson, N., Rodriguez, K. & Intawong, A. 2017. The angle of the north. GEOExPro 14 (3).Google Scholar
Horton, R. E. 1932. Drainage basin characteristics. Transactions of the American Geophysical Union 13, 350–61.Google Scholar
Horton, R. E. 1945. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56, 275370.Google Scholar
Hovius, N. & Leeder, M. R. 1998. Clastic sediment supply to basins. Basin Research 10, 15.Google Scholar
Hsieh, C. Y. 1948. Palaeogeography as a guide to mineral exploration. Bulletin of the Geological Society of China 28 (1–2), 111.Google Scholar
Huc, A.-Y. (ed.) 1995. Paleogeography, Paleoclimate, and Source Rocks. American Association of Petroleum Geologists, Studies in Geology 40, 355 pp.Google Scholar
Hughes, N. F. (ed.) 1973. Organisms and Continents through Time: A Symposium. London: The Palaeontological Association, 334 pp.Google Scholar
Humboldt, A. v. & Bonpland, A. 1807. Essai sur la Géographie des Plantes; Accompagne d'un Tableau Physique des Régions Équinoxiales. Paris: Fr. Schoell, 155 pp.Google Scholar
Hunt, T. S. 1862. Notes on the history of petroleum or rock oil. In Annual Report of the Board of Regents of the Smithsonian Institution, Showing the Operations, Expenditures, and Condition of the Institution for the Year 1861, pp. 319–29. Washington, D.C.: Government Printing Office.Google Scholar
Hunt, T. S. 1873. The paleogeography of the North-American continent. Journal of the American Geographical Society of New York 4, 416–31.Google Scholar
Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, London 137, 171–88.Google Scholar
Jukes-Browne, A. J. 1888. The Building of the British Isles, 3rd ed. London: George Bell and Sons, 343 pp.Google Scholar
Karner, G. D. & Driscoll, N. W. 1999. Tectonic and stratigraphic development of the West African and eastern Brazilian margins: insights from quantitative basin modelling. In The Oil and Gas Habitats of the South Atlantic (eds Cameron, N. R., Bate, R. H. & Clure, V. S.), pp. 1140. London: Geological Society of London.Google Scholar
Karner, G. D., Driscoll, N. W., McGinnis, J. P., Brumbaugh, W. D. & Cameron, N. R. 1997. Tectonic significance of syn-rift sediment packages across the Gabon-Cabinda continental margin. Marine and Petroleum Geology 14 (7/8), 9731000.Google Scholar
Katz, B. J. 1995. Factors controlling the development of lacustrine petroleum source rocks – an update. In Paleogeography, Paleoclimate, and Source Rocks (ed. Huc, A.-Y.), pp. 6179. American Association of Petroleum Geologists, Studies in Geology 40.Google Scholar
Kay, M. 1945. Paleogeographic and palinspastic maps. American Association of Petroleum Geologists Bulletin 29 (4), 426–50.Google Scholar
Kellum, L. B. 1936. Paleogeography of parts of border province of Mexico adjacent to west Texas. American Association of Petroleum Geologists Bulletin 20 (4), 417–32.Google Scholar
King, L. C. 1950. The study of the world's plainlands: a new approach in geomorphology. Quarterly Journal of the Geological Society, London 57, 101–31.Google Scholar
King, L. C. 1958. Basic palaeogeography of Gondwanaland during the late Palaeozoic and Mesozoic eras. Quarterly Journal of the Geological Society 114, 4770.Google Scholar
Kossmat, F. 1908. Palaögeographie (Geologische geschichte der meere und festländer). Leipzig: G. J. Göschen, 169 pp.Google Scholar
Labaume, P., Meresse, F., Jolivet, M., Teixell, A. & Lahfid, A. 2016. Tectono-thermal history of an exhumed thrust-sheet-top basin: an example from the south Pyrenean thrust belt. Tectonics 35, 1280–313.Google Scholar
Langbein, W. B. & Schumm, S. A. 1958. Yield of sediment in relation to mean annual precipitation. American Geophysical Union Transactions 39, 1076–84.Google Scholar
Lapparent, A. A. C. D. 1900. Traité de Géologie, 4th ed. Paris: Masson et Cie, 1237 pp.Google Scholar
Ledru, P., N'Dong, J. E., Johan, V., Prian, J.-P., Coste, B. & Haccard, D. 1989. Structural and metamorphic evolution of the Gabon orogenic belt: collision tectonics in the Lower Proterozoic. Precambrian Research 44, 227–41.Google Scholar
Leturmy, P., Lucazeau, F. & Brigaud, F. 2003. Dynamic interactions between the Gulf of Guinea passive margin and the Congo River drainage basin: 1. Morphology and mass balance. Journal of Geophysical Research 108 (B8), 2383. doi: 10.1029/2002JB001927.Google Scholar
Levorsen, A. I. 1931. Pennsylvanian overlap in United States. American Association of Petroleum Geologists Bulletin 15 (2), 113–48.Google Scholar
Levorsen, A. I. 1933. Studies in paleogeology. American Association of Petroleum Geologists Bulletin 17 (9), 1107–32.Google Scholar
Levorsen, A. I. 1936. Stratigraphic versus structural accumulation. American Association of Petroleum Geologists Bulletin 20 (5), 521–30.Google Scholar
Lillegraven, J. A. & Ostresh, L. M. Jr. 1988. Evolution of Wyoming's early Cenozoic topography and drainage patterns. National Geographic Research 4 (3), 303–27.Google Scholar
Lithgow-Bertelloni, C. & Silver, P. G. 1998. Dynamic topography, plate driving forces and the African superswell. Nature 395, 269–72.Google Scholar
Lunt, D. J., Farnsworth, A., Loptson, C., Foster, G. L., Markwick, P. J., O'Brien, C. L., Pancost, R. D., Robinson, S. A. & Wrobel, N. 2016. Palaeogeographic controls on climate and proxy interpretation. Climates of the Past 12, 1181–98.Google Scholar
Lyell, C. 1830. Principles of Geology, Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation, 1st ed. London: John Murray, 511 pp.Google Scholar
Lyell, C. 1837. Principles of Geology: Being an Inquiry How Far the Former Changes of the Earth's Surface are Referable to Causes Now in Operation, 5th ed. Philadelphia: James Kay, Jun. & brother, 546 pp.Google Scholar
Mallory, W. W. (ed.) 1972. Geologic Atlas of the Rocky Mountain Region. Denver, Colorado: Rocky Mountain Association of Geologists, 331 pp.Google Scholar
Manatschal, G. 2012. Tectono-magmatic evolution of Atlantic type rifted margins. In Magmatic Rifting and Active Volcanism Conference, 10–13th January, 2012, Addis Ababa.Google Scholar
Markwick, P. J. 2007. The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons. In Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N.), pp. 251312. London: The Micropalaeontological Society & The Geological Society of London.Google Scholar
Markwick, P. J. 2011 a. Source facies prediction: boundary conditions, uncertainties, history and future. In Source Rocks: Character, Prediction and Value. 12–13 September 2011, pp. 2528. London: Geological Society of London.Google Scholar
Markwick, P. J. 2011 b. South Atlantic palaeogeography: reconstructing palaeolandscapes for New Ventures. GEOExPro 8 (4), 30–4.Google Scholar
Markwick, P. J. 2013. The evolution of sediment supply to the South Atlantic margins. In Finding Petroleum. London: Finding Petroleum (available online at http://www.findingpetroleum.com/home/).Google Scholar
Markwick, P. J. 2018. Palaeogeography and big data. In Janet Watson Meeting 2018: A Data Explosion: The Impact of Big Data in Geoscience. 27 February – 1 March, 2018 (eds Duffin, N., Gill, C., Howell, J., Smyth, H. & Sides, I.). London: Geological Society of London.Google Scholar
Markwick, P. J., Campanile, D., Galsworthy, A., Raynham, L., Harland, M., Benny, K. E., Bailiff, R., Bonne, K., Hagen, L., Eue, D. & Wrobel, N. 2011. A reconstruction of global sediment fluxes since the Late Jurassic: fact, fiction or wishful. In AAPG Annual Convention and Exhibition, April 10–13, 2011, Houston, Texas. AAPG Search and Discovery Article #90124.Google Scholar
Markwick, P. J., Crossley, R. & Valdes, P. J. 2002. A comparison of “Ice-House” (Modern) and “Hot-House” (Maastrichtian) drainage systems: the implications of large-scale changes in the surface hydrological scheme. In Eos Transactions of the American Geophysical Union, Fall Meeting Supplement 83 (47). Abstract PP62A-0336.Google Scholar
Markwick, P. J., Galsworthy, A. & Raynham, L. 2015. The paleogeography of the world in 101 stages. Geological Society of America Abstracts with Programs 45 (7), 234.Google Scholar
Markwick, P. J., Gill, L. & Valdes, P. J. 2008. Source facies prediction in the Mesozoic and Cenozoic Circum-Arctic. In AAPG 2008 Annual Convention and Exhibition, April 20–23, 2008, San Antonio, Texas. AAPG Search and Discovery Article #90078.Google Scholar
Markwick, P. J., Jacques, J. M. & Valdes, P. J. 2005. The interplay of tectonics, paleogeography and paleoclimatology in reconstructing global paleodrainage systems through time. In AAPG Annual Convention, June 19–22, 2005, Calgary, Alberta. AAPG Search and Discovery Article #90039.Google Scholar
Markwick, P. J. & Lupia, R. 2001. Palaeontological databases for palaeobiogeography, palaeoecology and biodiversity: a question of scale. In Palaeobiogeography and Biodiversity Change: A Comparison of the Ordovician and Mesozoic–Cenozoic Radiations (eds Crame, J. A. & Owen, A. W.), pp. 169–74. London: Geological Society of London.Google Scholar
Markwick, P. J., Proctor, R., Valdes, P. J., Wolf, J. & Jacques, J. M. 2006. Predicting large-scale clastic depositional systems using global ocean-atmosphere, tide and wave models: modern and Maastrichtian compared. In AAPG International Conference and Exhibition, November 5–8, 2006, Perth, West Australia. AAPG Search and Discovery Article #90061.Google Scholar
Markwick, P. J., Raddadi, M. C., Raynham, L., Tomlinson, S., Edgecombe, E., Rowland, D., Bailiff, R., Galsworthy, A. & Wrobel, N. 2009. The evolution of the South Atlantic hinterlands from the Late Jurassic to Recent: mapping stage level changes in source-to-sink relationships. In AAPG International Conference and Exhibition, 15–18 November 2009, Rio de Janeiro, Brazil. AAPG Search and Discovery Article #90100.Google Scholar
Markwick, P. J. & Rowley, D. B. 1998. The geologic evidence for Triassic to Pleistocene glaciations: implications for eustacy. In Paleogeographic Evolution and Non-Glacial Eustasy, Northern South America (eds Pindell, J. L. & Drake, C. L.), pp. 1743. SEPM Special Publication no. 58.Google Scholar
Markwick, P. J., Rowley, D. B., Ziegler, A. M., Hulver, M., Valdes, P. J. & Sellwood, B. W. 2000. Late Cretaceous and Cenozoic global palaeogeographies: mapping the transition from a “hot-house” world to an “ice-house” world. GFF 122 (1), 103.Google Scholar
Markwick, P. J. & Valdes, P. J. 2004. Palaeo-digital elevation models for use as boundary conditions in coupled ocean-atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 3763.Google Scholar
Markwick, P. J. & Valdes, P. J. 2007. Defining uncertainty in Earth system based process models of source, reservoir and seal facies. In AAPG Annual Convention, April 1–4, 2007, Long Beach, California. AAPG Search and Discovery Article #90063.Google Scholar
Markwick, P. J., Wilson, K. L. & Lefterov, V. 2008. Middle Miocene palaeogeography and palaeolandscape of Indochina. In AAPG 2008 Annual Convention and Exhibition, April 20–23, 2008, San Antonio, Texas. AAPG Search and Discover Article #90078.Google Scholar
Martinsen, O. J. & Sømme, T. O. 2013. Non-equilibrium source-to-sink systems: controls and examples. In AAPG Annual Convention and Exhibition, May 19–22, 2013, Pittsburgh, Pennsylvania. AAPG Search and Discovery Article #30308.Google Scholar
Martinsen, O. J., Sømme, T. O., Thurmond, J. B. & Lunt, I. 2010. Source-to-sink systems on passive margins: Theory and practice with an example from the Norwegian continental margin. Geological Society of London, Petroleum Geology Conference Series 7, 913–20.Google Scholar
Martinsen, O. J., Sømme, T. O., Thurmond, A., Skogseid, J., Lunt, I., Leith, L. & Helland-Hansen, W. 2011. Perspectives on source-to-sink: methods, tools and development for subsurface energy exploration and exploitation. In AGU Chapman Conference on Source to Sink Systems Around the World and Through Time, 24–27 January 2011, Oxnard, California. American Geophysical Union.Google Scholar
Meybeck, M. 1976. Total mineral dissolved transport by world major rivers. Hydrological Sciences Bulletin 21 (2), 265–84.Google Scholar
Miall, A. D. 1986. Eustatic sea level changes interpreted from seismic stratigraphy: a critique of the methodology with particular reference to the North Sea Jurassic record. American Association of Petroleum Geologists Bulletin 70 (2), 131–7.Google Scholar
Miller, R. G. 1989. Prediction of ancient coastal upwelling and related source rocks from palaeo-atmospheric pressure maps. Marine and Petroleum Geology 6, 277–83.Google Scholar
Milliman, J. D. & Syvitski, J. P. M. 1994. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountain rivers. In Material Fluxes on the Surface of the Earth (ed. Board of Earth Sciences and Resources, National Research Council), pp. 7485. Washington, D.C.: National Academy Press.Google Scholar
Millington, J. J. & Clark, J. D. 1995. The Charo/Arro canyon-mouth sheet system, south-central Pyrenees, Spain; a structurally influenced zone of sediment dispersal. Journal of Sedimentary Research 65 (4b), 443–54.Google Scholar
Mooney, W. D., Laske, G. & Masters, T. G. 1998. CRUST 5.1: A global crustal model at 5° x 5°. Journal of Geophysical Research B. Solid Earth and Planets 103 (B1), 727–47.Google Scholar
Moucha, R. & Forte, A. M. 2011. Changes in African topography driven by mantle convection. Nature Geoscience 4, 707–12.Google Scholar
Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quéré, S., Simmons, N. A. & Grand, S. P. 2008. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth and Planetary Science Letters 271, 101–8.Google Scholar
Mouthereau, F., Watts, A. B. & Burov, E. 2013. Structure of orogenic belts controlled by lithosphere age. Nature Geoscience 6, 785–89.Google Scholar
Müller, P. J. & Suess, E. 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans – I. Organic carbon preservation. Deep-Sea Research 26A, 1347–62.Google Scholar
Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems 9, Q04006. doi: 10.1029/2007GC001743.Google Scholar
Muñoz, J.-A., Beamud, E., Fernández, O., Arbués, P., Dinarès-Turell, J. & Poblet, J. 2013. The Ainsa fold and thrust oblique zone of the central Pyrenees: kinematics of a curved contractional system from paleomagnetic and structural data. Tectonics 32 (5), 1142–75.Google Scholar
Mutti, E., Tinterri, R., di Biase, D., Fava, L., Mavilla, N., Angella, S. & Calabrese, L. 2000. Delta-front facies associations of ancient flood-dominated fluvio-deltaic systems. Revista de la Sociedad Geológica de España 13 (2), 165–90.Google Scholar
Nibbelink, K. A. & Budihardjo, S. 2002. Paleo-Congo River fan in northern Gabon. In AAPG Annual Meeting, March 1–13, 2002, Houston, Texas. AAPG Search and Discovery Article #90007.Google Scholar
Nyblade, A. A. & Robinson, S. W. 1994. The African Superswell. Geophysical Research Letters 21 (9), 765– 68.Google Scholar
Parrish, J. T. 1982. Upwelling and petroleum source beds, with reference to Paleozoic. American Association of Petroleum Geologists Bulletin 66, 750–74.Google Scholar
Parrish, J. T. & Barron, E. J. 1986. Paleoclimates and economic geology. SEPM Short Course 18, 1162.Google Scholar
Parrish, J. T. & Curtis, R. L. 1982. Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 40, 3166.Google Scholar
Parrish, J. T., Ziegler, A. M. & Humphreville, R. G. 1983. Upwelling in the Paleozoic era. In Coastal Upwelling. Its Sediment Record. Part B: Sedimentary Records of Ancient Coastal Upwelling (eds Thiede, J. & Suess, E.), pp. 553–78. New York: Plenum Press.Google Scholar
Partridge, T. C. & Maud, R. 1987. Geomorphic evolution of Southern Africa since the Mesozoic. South African Journal of Geology 90 (2), 179208.Google Scholar
Patzkowsky, M. E., Smith, L. H., Markwick, P. J., Engberts, C. J. & Gyllenhaal, E. D. 1991. Application of the Fujita-Ziegler paleoclimate model: Early Permian and Late Cretaceous examples. Palaeogeography, Palaeoclimatology, Palaeoecology 86, 6785.Google Scholar
Paul, J. D., Roberts, G. G. & White, N. J. 2014. The African landscape through space and time. Tectonics 33 (6), 898935.Google Scholar
Pazzaglia, F. J. 2003. Landscape evolution models. Development in Quaternary Science 1, 247–74.Google Scholar
Péron-Pinvidic, G. & Manatschal, G. 2010. From microcontinents to extensional allochthons: witnesses of how continents rift and break apart? Petroleum Geoscience 16 (3), 189–97.Google Scholar
Pollack, H. N., Hurter, S. & Johnson, J. R. 1993. Heat flow from the Earth's interior: analysis of the global data set. Reviews of Geophysics 31 (3), 267–80.Google Scholar
Pope, V. D., Gallani, M. L., Rowntree, P. R. & Stratton, R. A. 2000. The impact of new physical parametrizations in the Hadley Centre climate model – HadCM3. Climate Dynamics 16, 123–46.Google Scholar
Proctor, R. & Markwick, P. J. 2005. Tides in the Maastrichtian era. Geophysical Research Abstracts 7, 09198.Google Scholar
Raddadi, M. C., Hoult, R. J. & Markwick, P. J. 2008. The Late Cretaceous uplift history of the South Atlantic continental margins: example from the Santos and Campos Basins of southeast Brazil. In AAPG 2008 Annual Convention and Exhibition, April 20–23, 2008, San Antonio, Texas. AAPG Search and Discovery Article #90078.Google Scholar
Raddadi, M. C., Markwick, P. J. & Hill, C. 2010. Palaeogeographic evolution and petroleum potential of the Equatorial Atlantic margins. In AAPG Annual Convention and Exhibition, 11–14 April, 2010, New Orleans, Louisiana. AAPG Search and Discovery Article #90104.Google Scholar
Ramacha, E., Poyatos-Moré, M., Fernández, L. P. & Oms, O. 2011. Hyperpycnal flow deposits of the Castissent depositional sequence shelf-margin deltas, insights to unravel the detailed tectonic control through a genetic facies analysis (Eocene, South-central Pyrenees, Spain). In 28th IAS Meeting of Sedimentology 2011, Zaragoza, Spain, p. 448.Google Scholar
Reed, R. D. 1923. Some suggestions in regard to Pennsylvanian previous paleogeography in the Henryetta District, Oklahoma. American Association of Petroleum Geologists Bulletin 7 (1), 50–7.Google Scholar
Reed, R. D. 1926. Miocene paleogeography in the central Coast Ranges. American Association of Petroleum Geologists Bulletin 10 (2), 130–7.Google Scholar
Roberts, G. G. & White, N. J. 2010. Estimating uplift rate histories from river profiles using African examples. Journal of Geophysical Research. Earth Surface 115 (B2). doi: 10.1029/2009JB006692.Google Scholar
Robinson, E. G. 1934. Some notes on the Upper Cretaceous paleogeography of Montana. American Association of Petroleum Geologists Bulletin 8 (5), 554–9.Google Scholar
Ronov, A. B., Khain, V. E. & Balukhovski, A. 1989. Atlas of Lithological Paleogeographic Maps of the World: Mesozoic and Cenozoic of the Continents. Leningrad: USSR Academy of Sciences, 79 pp.Google Scholar
Ronov, A. B., Khain, V. E. & Seslavinski, A. 1984. Atlas of Lithological Paleogeographic Maps of the World: Late Precambrian and Paleozoic of the Continents. Leningrad: USSR Academy of Sciences, 70 pp.Google Scholar
Ross, M. I. & Scotese, C. R. 1997. Paleoclim: Paleoclimate Modelling Software.Google Scholar
Rowley, D. B., Forte, A. M., Moucha, R., Mitrovica, J. X., Simmons, N. A. & Grand, S. P. 2013. Dynamic topography change of the eastern United States since 3 million years ago. Science 340, 1560–3.Google Scholar
Rowley, D. B. & Lottes, A. L. 1988. Plate-kinematic reconstructions of the North Atlantic and Arctic: late Jurassic and Present. Tectonophysics 155, 73120.Google Scholar
Rowley, D. B. & Markwick, P. J. 1992. Haq et al. eustatic sea level curve: implications for sequestered water volumes. Journal of Geology 100, 703–15.Google Scholar
Rowley, D. B., Pierrehumbert, R. T. & Currie, B. S. 2001. A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters 5836, 117.Google Scholar
Rudge, J. F., Roberts, G. G., White, N. J. & Richardson, C. N. 2014. Uplift histories of Africa and Australia from linear inverse modeling of drainage inventories. Journal of Geophysical Research. Earth Surface 120 (5), 894914.Google Scholar
Sachse, V. F., Delvaux, D. & Littke, R. 2012. Petrological and geochemical investigations of potential source rocks of the central Congo Basin, Democratic Republic of Congo. American Association of Petroleum Geologists Bulletin 96 (2), 245–75.Google Scholar
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C. & Scholle, P. A. 1987. The Cenomanian–Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. In Marine Petroleum Source Rocks (eds Brooks, J. & Fleet, A. J.), pp. 371–99. Oxford: Blackwell Scientific Publishers.Google Scholar
Schlanger, S. O. & Jenkyns, H. C. 1976. Cretaceous Oceanic Anoxic Events: causes and consequences. Geologie en Mijnbouw 55 (3–4), 179–84.Google Scholar
Schuchert, C. 1910. Paleogeography of North America. Geological Society of America Bulletin 20, 427606.Google Scholar
Schuchert, C. 1918. A century of geology – the progress of historical geology in North America. In A Century of Science in America with Special Reference to the American Journal of Science 1818–1918 (eds Dana, E. S., Schuchert, C., Gregory, H. E., Barrell, J., Smith, G. O., Lull, R. S., Pirsson, L. V., Ford, W. E., Sosman, R. B., Wells, H. L., Foote, H. W., Page, L., Coe, W. R. & Goodale, G. L.), pp. 60121. New Haven: Yale University Press.Google Scholar
Schuchert, C. 1919. The relations of stratigraphy and paleogeography to petroleum geology. American Association of Petroleum Geologists Bulletin 3 (1), 286–98.Google Scholar
Schuchert, C. 1928. The making of paleogeographic maps. Leopoldina 4 (Amerikaband), 116–25.Google Scholar
Sclater, J. G., Hellinger, S. & Tapscott, C. 1977. The paleobathymetry of the Atlantic Ocean from the Jurassic to the Present. The Journal of Geology 85 (5), 509–52.Google Scholar
Scotese, C. R. 2008. Plate tectonic and paleogeographic mapping: state of the art. AAPG Search and Discovery Article #40312.Google Scholar
Scotese, C. R. 2011. Paleogeographic and paleoclimatic atlas. AAPG Search and Discovery Article #30192.Google Scholar
Scotese, C. R. 2014 a. Atlas of Neogene Paleogeographic Maps (Mollweide Projection), Maps 1–7, Volume 1, The Cenozoic. Evanston, Illinois: PALEOMAP Project.Google Scholar
Scotese, C. R. 2014 b. Atlas of Late Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS, Volume 2, The Cretaceous, Maps 16 – 22, Mollweide Projection. Evanston, Illinois: PALEOMAP Project.Google Scholar
Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R. & Ziegler, A. M. 1979. Paleozoic base maps. Journal of Geology 87, 217–77.Google Scholar
Scotese, C. R. & Golonka, J. 1992. PALEOMAP paleogeographic atlas. In PALEOMAP Progress Report. Arlington, Texas: Department of Geology, University of Texas at Arlington.Google Scholar
Scotese, C. R. & Summerhayes, C. P. 1986. Computer model of paleoclimate predicts coastal upwelling in the Mesozoic and Cainozoic. Geobyte 1, 2842.Google Scholar
Scotese, C. R., Zumberge, J., Illich, H., Moore, T. & Ramos, S. 2008. Using paleoclimate models to predict source rock occurrence: results from the GANDOLPH Project. In AAPG Search and Discovery Article #40287.Google Scholar
Séranne, M. & Anka, Z. 2005. South Atlantic continental margins of Africa: a comparison of the tectonic vs climate interplay on the evolution of equatorial West Africa and SW Africa margins. Journal of African Earth Sciences 43, 283300.Google Scholar
Séranne, M., Bruguier, O. & Moussavou, M. 2008. U–Pb single zircon grain dating of Present fluvial and Cenozoic aeolian sediments from Gabon: consequences on sediment provenance, reworking, and erosion processes on the equatorial West African margin. Bulletin de la Société géologique de France 179 (1), 2940.Google Scholar
Shell Exploration and Production. 2013. Play Based Exploration. A Guide for AAPG's Imperial Barrel Award Participants, pp. 151. Rijswijk: Royal Dutch Shell.Google Scholar
Simmons, M. 2011. The ups and downs of eustatic sea level change: review and applications. GEOExPro 8 (5), 64–9.Google Scholar
Smith, A. G., Briden, J. C. & Drewry, G. E. 1973. Phanerozoic world maps. In Organism and Continents Through Time: A Symposium (ed. Hughes, N. F.), pp. 142. London: The Paleontological Association.Google Scholar
Smith, A. G., Smith, D. G. & Funnell, B. M. 1994. Atlas of Mesozoic and Cenozoic Coastlines. Cambridge: Cambridge University Press, 54 pp.Google Scholar
Sømme, T. O., Helland-Hansen, W., Martinsen, O. J. & Thurmond, J. B. 2009. Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems. Basin Research 21, 361–87.Google Scholar
Sømme, T. O., Martinsen, O. J. & Lunt, I. 2013. Linking offshore stratigraphy to onshore paleotopography: the Late Jurassic–Paleocene evolution of the south Norwegian margin. Geological Society of America Bulletin 125 (7–9), 1164–86.Google Scholar
Stankiewicz, J. & De Wit, M. J. 2006. A proposed drainage evolution model for central Africa – did the Congo flow east? Journal of African Earth Sciences 44, 7584.Google Scholar
Stein, C. A. & Stein, S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–9.Google Scholar
Strahler, A. N. 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin 63, 1117–42.Google Scholar
Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union 38 (6), 913–20.Google Scholar
Strahler, A. N. 1964. Quantitative geomorphology of drainage basins and channel networks. In Handbook of Applied Hydrology (ed. Chow, V. T.), pp. 4-39–4-76. New York: McGraw Hill.Google Scholar
Suess, E. & Thiede, J. (eds) 1983. Coastal Upwelling. Its Sediment Record. Part A: Responses of the Sedimentary Regime to Present Coastal Upwelling. New York: Plenum Press, 626 pp.Google Scholar
Summerhayes, C. P. 1981. Organic facies of middle Cretaceous black shales in deep North Atlantic. American Association of Petroleum Geologists Bulletin 65 (11), 2364–80.Google Scholar
Summerhayes, C. P. 1983. Sedimentation of organic matter in upwelling regimes. In Coastal Upwelling. Its Sediment Record. Part B: Sedimentary Records of Ancient Coastal Upwelling (eds Thiede, J. & Suess, E.), pp. 2972. New York: Plenum Press.Google Scholar
Summerhayes, C. P. 2015. Earth's Climate Evolution: A Geological Perspective. Chichester: Wiley Blackwell, 410 pp.Google Scholar
Syvitski, J. P. M., Peckham, S. D., Hilberman, R. & Mulder, T. 2003. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sedimentary Geology 162, 524.Google Scholar
Teichert, C. 1941. Upper Paleozoic of Western Australia: correlation and paleogeography. American Association of Petroleum Geologists Bulletin 25 (3), 371415.Google Scholar
Teisserenc, P. & Villemin, J. 1989. Sedimentary basin of Gabon – geology and oil systems. In Divergent/Passive Margin Basins (eds Edwards, J. D. & Santogrossi, P. A.), pp. 117–99. American Association of Petroleum Geologists Memoir 48.Google Scholar
Thiede, J. 1979. Paleogeography and paleobathymetry of the Mesozoic and Cenozoic North Atlantic Ocean. GeoJournal 3 (3), 263–72.Google Scholar
Thiede, J. 1982. Paleogeography and paleobathymetry: quantitative reconstructions of ocean basins. In Tidal Friction and the Earth's Rotation II. Proceedings of a Workshop Held at the Centre for Interdisciplinary Research (ZiF) of the University of Bielefeld, September 28–October 3, 1981 (eds Brosche, P. & Sündermann, J.), pp. 229–39. Berlin: Springer-Verlag.Google Scholar
Tucker, G. E. & Slingerland, R. L. 1994. Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study. Journal of Geophysical Research 99 (B6), 12229–43.Google Scholar
Twidale, C. R. 2004. River patterns and their meaning. Earth-Science Reviews 67 (3–4), 159218.Google Scholar
Tyson, R. V. 1995. Sedimentary Organic Matter. Organic Facies and Palynofacies. Berlin: Springer, 615 pp.Google Scholar
Tyson, R. V. 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry 32 (2), 333–9.Google Scholar
Unternehr, P., Péron-Pinvidic, G., Manatschal, G. & Sutra, E. 2010. Hyper-extended crust in the South Atlantic: in search of a model. Petroleum Geoscience 16 (3), 207–15.Google Scholar
Van der Beek, P. A. & Braun, J. 1998. Numerical modelling of landscape evolution on geological time-scales: a parameter analysis and comparison with the south-eastern highlands of Australia. Basin Research 10, 4968.Google Scholar
Vérard, C. & Hochard, C. 2011. Geodynamic evolution of the Earth over 600 Ma: palaeo-topography & -bathymetry (from 2D to 3D). In AGU Fall Meeting, San Francisco, 5–9 December 2011. Abstract PP13D-1848.Google Scholar
Vérard, C., Hochard, C., Baumgartner, P. O. & Stampfli, G. M. 2015. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. Journal of Palaeogeography 4 (1), 6484.Google Scholar
Vine, F. J. 1966. Spreading of the ocean floor: new evidence. Science 154 (3755), 1405–15.Google Scholar
Vine, F. J. 1973. Organic diversity, palaeomagnetism, and Permian palaeogeography. In Organisms and Continents through Time: A Symposium (ed. Hughes, N. F.), pp. 6177. London: The Palaeontological Association.Google Scholar
Vine, F. J. & Matthews, D. H. 1963. Magnetic anomalies over oceanic ridges. Nature 199 (4897), 947–49.Google Scholar
Vinogradov, A. P. (ed.) 1968. Atlas of the Lithological–Paleogeographical Maps of the USSR. Volume I. Pre-Cambrian, Cambrian, Ordovician and Silurian. Moscow: Ministry of Geology in the USSR and Academy of Sciences of the USSR, 52 pp.Google Scholar
Vinogradov, A. P. (ed.) 1969. Atlas of the Lithological–Paleogeographical Maps of the USSR. Volume II. Devonian, Carboniferous and Permian. Moscow: Ministry of Geology in the USSR and Academy of Sciences of the USSR, 65 pp.Google Scholar
Vinogradov, A. P., Grossheim, V. A. & Khain, V. E. 1967. Atlas of Lithological–Paleogeographical Maps of the USSR. Volume IV. Paleogene, Neogene and Quaternary. Moscow: Ministry of Geology in the USSR and Academy of Sciences of the USSR, 100 pp.Google Scholar
Vinogradov, A. P., Vereschchagin, V. N. & Ronov, A. B. 1968. Atlas of Lithological–Paleogeographical Maps of the USSR. Volume III. Triassic, Jurassic and Cretaceous. Moscow: Ministry of Geology in the USSR and Academy of Sciences of the USSR, 110 pp.Google Scholar
Wallace, A. R. 1876. The Geographical Distribution of Animals. London: MacMillan and Company, 503 pp.Google Scholar
Watts, A. B. 1982. Tectonic subsidence, flexure and global changes of sea level. Nature 297, 469–74.Google Scholar
Watts, A. B., Karner, G. D. & Steckler, M. S. 1982. Lithospheric flexure and the evolution of sedimentary basins. Philosophical Transactions of the Royal Society of London, Series A 305 (1489), 249–81.Google Scholar
Weeks, L. G. 1947. Paleogeography of South America. American Association of Petroleum Geologists Bulletin 31 (7), 1194–241.Google Scholar
Wegener, A. 1912 a. Die Entstehung der Kontinente. Geologische Rundschau 3 (4), 276–92.Google Scholar
Wegener, A. 1912 b. Die Herausbildung der Grossformen der Erdrinde (Kontinente und Ozeane), auf geophysikalischer Grundlage. Petermanns Geographisch. Mitteilungen 63, 185–95, 253–56, 305–9.Google Scholar
Wells, M. R., Allison, P. A., Hampson, G. J., Piggott, M. D. & Pain, C. C. 2005. Modelling ancient tides: the Upper Carboniferous epi-continental seaway of Northwest Europe. Sedimentology 52, 715–35.Google Scholar
Whipple, K. X. & Meade, B. J. 2004. Timescale of orogen response to tectonic and climatic forcing. Eos Transactions of the American Geophysical Union, Fall Meeting Supplement 85 (47). Abstract T33D-01.Google Scholar
Willis, B. 1909. Paleogeographic maps of North America. The Journal of Geology 17 (3), 203–8, 253–6, 286–8, 342–3, 403–5, 408–9, 424–8, 503–8.Google Scholar
Wills, L. J. 1951. A Palaeogeographical Atlas of the British Isles and Adjacent Parts of Europe. London and Glasgow: Blackie and Son Limited, 64 pp.Google Scholar
Wilson, J. T. 1962. Cabot Fault, an Appalachian equivalent of the San Andreas and Great Glen faults and some implications for continental displacement. Nature and Science 195 (4837), 135–8.Google Scholar
Wilson, J. T. 1963 a. Hypothesis of Earth's behaviour. Nature 198, 925–9.Google Scholar
Wilson, J. T. 1963 b. A possible origin of the Hawaiian Islands. Canadian Journal of Physics 41 (6), 863–70.Google Scholar
Wilson, J. T. 1963 c. Evidence from islands on the spreading of ocean floors. Nature 197, 536–8.Google Scholar
Wilson, J. W. P., Roberts, G. G., Hoggard, M. J. & White, N. J. 2014. Cenozoic epeirogeny of the Arabian Peninsula from drainage modeling. Geochemistry, Geophysics, Geosystems 15 (10), 3723–61.Google Scholar
Ziegler, A. M. 1965. Silurian marine communities and their environmental significance. Nature 207, 270–2.Google Scholar
Ziegler, P. A. 1982. Geological Atlas of Western and Central Europe. Amsterdam: Elsevier, 130 pp.Google Scholar
Ziegler, P. A. 1990. Geological Atlas of Western and Central Europe 1990, 2nd ed. Shell Internationale Petroleum Maatschappi BV, 239 pp.Google Scholar
Ziegler, P. A. 1999. Evolution of the Arctic-North Atlantic and the western Tethys – a visual presentation of a series of paleogeographic–paleotectonic maps. American Association of Petroleum Geologists Memoir 43, 164– 96.Google Scholar
Ziegler, A. M., Cocks, L. R. M. & Bambach, R. K. 1968. The composition and structure of lower Silurian marine communities. Lethaia 1, 127.Google Scholar
Ziegler, A. M., Eshel, G., Rees, P. M., Rothfus, T. A., Rowley, D. B. & Sunderlin, D. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia 36, 227–54.Google Scholar
Ziegler, A. M., Hansen, K. S., Johnson, M. E., Kelly, M. A., Scotese, C. R. & Van Der Voo, R. 1977. Silurian continental distributions, paleogeography, climatology, and biogeography. Tectonophysics 40, 1351.Google Scholar
Ziegler, A. M. & Rowley, D. B. 1998. The vanishing record of epeiric seas, with emphasis on the Late Cretaceous ‘Hudson Seaway’. In Tectonic Boundary Conditions for Climate Reconstructions (eds Crowley, T. J. & Burke, K. C.), pp. 147–65. Oxford: Oxford University Press.Google Scholar
Ziegler, A. M., Rowley, D. B., Lottes, A. L., Sahagian, D. L., Hulver, M. L. & Gierlowski, T. C. 1985. Paleogeographic interpretation: with an example from the Mid-Cretaceous. Annual Review of Earth and Planetary Sciences 13, 385425.Google Scholar
Ziegler, A. M., Scotese, C. R. & Barrett, S. F. 1982. Mesozoic and Cenozoic paleogeographic maps. In Tidal Friction and the Earth's Rotation II. Proceedings of a Workshop Held at the Centre for Interdisciplinary Research (ZiF) of the University of Bielefeld, September 28–October 3, 1981 (eds Brosche, P. & Sündermann, J.), pp. 240–52. Berlin: Springer-Verlag.Google Scholar
Ziegler, A. M., Scotese, C. R. & Barrett, S. F. 1983. Mesozoic and Cenozoic paleogeographic maps. In Tidal Friction and the Earth's Rotation II (eds Brosche, P. & Sündermann, J.), pp. 240–52. Berlin: Springer-Verlag.Google Scholar
Ziegler, A. M., Scotese, C. R., McKerrow, W. S., Johnson, M. E. & Bambach, R. K. 1979. Paleozoic paleogeography. Annual Review of Earth and Planetary Sciences 7, 473502.Google Scholar
Zuber, S. 1934. Paleogeography of oil-bearing deposits in proto-Caspian countries. American Association of Petroleum Geologists Bulletin 18 (6), 777–85.Google Scholar
Supplementary material: PDF

Markwick supplementary material

Markwick supplementary material 1

Download Markwick supplementary material(PDF)
PDF 5.5 MB