Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T20:12:36.090Z Has data issue: false hasContentIssue false

Precise early Cambrian U–Pb zircon dates bracket the oldest trilobites and archaeocyaths in Moroccan West Gondwana

Published online by Cambridge University Press:  15 June 2020

Ed Landing*
Affiliation:
New York State Museum, 222 Madison Avenue, Albany, NY12230, USA
Mark D. Schmitz
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive, Boise, Idaho83725, USA
Gerd Geyer
Affiliation:
Lehrstuhl für Geodynamik und Geomaterialforschung, Institut für Geographie und Geologie, Bayerische Julius-Maximilians-Universität Würzburg, Am Hubland, 97074Würzburg, Germany
Robin B. Trayler
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive, Boise, Idaho83725, USA Present address: Department of Life and Environmental Sciences, University of California-Merced, Merced, CA95343, USA
Samuel A. Bowring
Affiliation:
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139, USA
*
Author for correspondence: Ed Landing, Email: ed.landing@nysed.gov

Abstract

New U–Pb radioisotopic ages on early Cambrian volcanic zircons condition a high-resolution Bayesian age model that constrains the first occurrences and zonations of West Gondwanan archaeocyaths and trilobites in southern Morocco. The oldest archaeocyaths in the Tiout Member of the Igoudine Formation (519.71 + 0.26/− 0.35 Ma) are c. 6 Ma younger than the oldest Siberian archaeocyaths. The oldest Moroccan trilobite fragments, from the lower member of the Igoudine, are constrained to 519.95 + 0.43/− 0.40 Ma. The succeeding Issendalenian Stage (i.e. Hupetina antiqueEofallotaspis tioutensis – Fallotaspis plana – Choubertella – Daguinaspis trilobite zones) spans c. 1.5 Ma (519.78 + 0.26/− 0.37 Ma to 518.43 + 0.25/− 0.69 Ma). Identifiable Moroccan fallotaspidids and bigotinids, among Earth’s oldest trilobites, occur above a positive δ13C excursion dated with our age model at 520.27 + 0.59/− 0.57 Ma, and correlated with the IV excursion peak within the lower range of Siberian Atdabanian Stage trilobites (Repinaella Zone). This excursion is the best standard for a Cambrian Series 2 base. The oldest West Gondwana trilobite fragments are c. 1 Ma younger than those in Siberia and c. 0.5 Ma older than the oldest Avalonian trilobites (Callavia Zone). This diachrony means a trilobite first appearance datum is an inappropriate chronostratigraphic base for Cambrian Series 2. Taxonomic differences in the oldest trilobites between Cambrian palaeocontinents are in accordance with trace fossil evidence for the group’s appearance possibly as late as c. 530 Ma in the Cambrian Evolutionary Radiation. Coeval 519–517 Ma dates from Avalonia (cool-water siliciclastic shelf) and West Gondwana (tropical carbonate platform) sections with distinct macrofaunas emphasize these successions were latitudinally separate by the late Ediacaran Period.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

References

Allen, CM and Campbell, IH (2012) Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon. Chemical Geology 332–3, 157–65.CrossRefGoogle Scholar
Álvaro, JJ, Alhberg, P, Babcock, LE, Bordonaro, OL, Choi, D, Cooper, RA, Ergaliev, GKh, Gapp, IW, Pour, MG, Hughes, NC, Jago, JB, Korovnikov, I, Laurie, JR, Liebetrman, B, Patterson, JR, Pegel, TV, Popov, LE, Rushton, AWA, Sukhov, SS, Tortello, MF, Zhou, Z and Źyłinska, A (2013) Global Cambrian trilobite palaeobiogeography assessed using parsimony analysis of endemicity. In Early Palaeozoic Biogeography and Palaeogeography (eds Harper, DAT and Servais, T), pp. 273–96. Geological Society of London, Memoir no. 38, http://dx.doi.org/10.1144/M38.19.Google Scholar
Álvaro, JJ, Bellido, F, Gasquet, D, Pereira, MF, Quesada, C and Sánchez-García, T (2014) Diachronism in the late Neoproterozoic–Cambrian arc transition of North Gondwana: a comparison of Morocco and the Iberian Ossa-Moreno Zone. Journal of African Earth Sciences 98, 113–32.CrossRefGoogle Scholar
Bosscher, H and Schlager, W (1993) Accumulation rates of carbonate platforms. Journal of Geology 101, 345–55.CrossRefGoogle Scholar
Boudda, A and Choubert, G (1972) Sur la limite inférieur du Cambrien au Maroc. Comptes Rendus de l’Académie des Sciences (D) 275, 58.Google Scholar
Bowring, SA and Schmitz, MD (2003) High-precision U-Pb zircon geochronology and the stratigraphic record. In Zircon: Experiments, Isotopes, and Trace Element Investigations (eds Hanchae, JM and Huskins, PWO), pp. 305–26. Mineralogical Society of America, Virginia, Reviews in Mineralogy and Geochemistry no. 53.CrossRefGoogle Scholar
Brasier, MD and Cowie, JW (1989) Other areas: north-west Canada; California, Nevada, and Mexico; Morocco, Spain, and France. In The Precambrian–Cambrian Boundary (eds Cowie, JW and Brasier, MD), pp. 105–14. Oxford University Press, Monographs on Geology and Geophysics no. 12.Google Scholar
Brasier, MD, Magaritz, M, Corfield, R, Luo, HL, Wu, XC, Lin, OY, Jiang, ZhW, Hamdi, B, He, TG and Fraser, AG (1991) The carbon- and oxygen-isotope record of the Precambrian–Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 319–32.CrossRefGoogle Scholar
Choubert, G (1952) Le Précambrien III et le Géorgien de l’Anti-Atlas. In Contribution à l’etude du Cambrien inférieur et du Précambrien III de l’AntiAtlas marocain (ed Hupé, P), pp. 1739. Notes et Mémoires de la Service géologique du Maroc, 103, Bagnolet, Seine.Google Scholar
Compston, W, Williams, JL, Kirschvink, JL, Zhang, ZhW and Ma, G (1992) Zircon U-Pb ages for the Early Cambrian time scale. Journal of the Geological Society of London 127, 319–32.Google Scholar
Condon, DJ, McLean, NM, Bowring, SA and Parrish, RR (2015) Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta 164, 464–80.CrossRefGoogle Scholar
Debrenne, F and Debrenne, M (1978) Archaeocyathid fauna of the lowest fossiliferous levels of Tiout (Lower Cambrian – southern Morocco). Geological Magazine 115, 1101–19.CrossRefGoogle Scholar
Debrenne, F and Debrenne, M (1995) Archaeocyaths of the lower Cambrian of Morocco. Beringeria Special Issue 2, 121–45.Google Scholar
Debrenne, F, Debrenne, M and Faure-Muret, A (1992) Faune d’archaéocyathes de l’Anti-Atlas (bordures nord et sud) et du Haut Atlas occidental, Cambrien inférieur, Maroc. Géologie Méditerraneénne 17, 177211.CrossRefGoogle Scholar
Eggleston, JR and Dean, WE (1976) Freshwater stromatolitic bioherms in Green Lake, New York. Developments in Sedimentology 20, 479–88.CrossRefGoogle Scholar
Fortey, RA, Briggs, DEG and Wills, MA (1996) The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society 57, 1333.Google Scholar
Geyer, G (1989) Late Precambrian to early Middle Cambrian lithostratigraphy of southern Morocco. Beringeria 1, 115–43.Google Scholar
Geyer, G (1990) Revised Lower to lower Middle Cambrian biostratigraphy of Morocco. Newsletters on Stratigraphy 22, 87109.CrossRefGoogle Scholar
Geyer, G (1996) The Moroccan fallotaspidid trilobites revisited. Beringeria 18, 89199.Google Scholar
Geyer, G (2019) The earliest known West Gondwanan trilobites from the Anti-Atlas of Morocco, with a revision of the Family Bigotinidae Hupé, 1953. Fossils and Strata 64, 55153.CrossRefGoogle Scholar
Geyer, G and Landing, E (1995) The Cambrian of the Moroccan Atlas regions. Beringeria Special Issue 2, 746.Google Scholar
Geyer, G and Landing, E (2004) A unified Lower–Middle Cambrian chronostratigraphy for West Gondwana. Acta Geologica Polonica 54, 179218.Google Scholar
Geyer, G and Landing, E (2006a) Latest Ediacaran and Cambrian of the Moroccan Atlas regions. In Morocco 2006. Ediacaran–Cambrian Depositional Environments and Stratigraphy of the Western Atlas Regions. Explanatory Description and Field Excursion Guide (eds Geyer, G and Landing, E), pp. 746. Beringeria Special Issue 6.Google Scholar
Geyer, G and Landing, E (2006b) Ediacaran–Cambrian depositional environments and stratigraphy of the western Atlas regions. In Morocco 2006. Ediacaran–Cambrian Depositional Environments and Stratigraphy of the Western Atlas Regions. Explanatory Description and Field Excursion Guide (eds Geyer, G and Landing, E), pp. 47120. Beringeria Special Issue 6.Google Scholar
Geyer, G and Landing, E (2017) The Precambrian–Phanerozoic and Ediacaran–Cambrian boundary: a historic approach to a long unresolved dilemma. In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier (eds Brasier, AD, McIlroy, D and McLoughlin, N), pp. 311–49. Geological Society of London, Special Publication no. 448, doi:10.1144/SP448.10.Google Scholar
Geyer, G and Landing, E (2018) An exploring expedition (sic) to the world’s oldest trilobites. In Proceedings of the International Conference on Ediacaran and Cambrian Sciences. Joint Meeting of International Subcommission on Cambrian Stratigraphy (ISCS) and International Subcommission on Ediacaran Stratigraphy (ISES), 12–16 August, 2018, Xi’an, pp. 66–68.Google Scholar
Harkless, R and Hicks, H (1871) On the ancient rocks the St. David’s Promontory, South Wales, and their fossil contents. Quarterly Journal of the Geological Society, London 27, 384404.CrossRefGoogle Scholar
Harvey, THP, Williams, M, Condon, DJ, Wilby, PR, Siveter, DJ, Rushton, AWA, Leng, MJ and Gabbott, SE (2011) A refined chronology for the Cambrian succession of southern Britain. Journal of the Geological Society, London 168, 705–16.CrossRefGoogle Scholar
Haslett, J and Parnell, A (2008) A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society: Series C (Applied Statistics) 57, 399418.Google Scholar
Hollingsworth, JS (2007) Fallotaspidoid trilobite assemblage from the Esmeralda Basin (western Nevada, USA). Memoirs of the Australasian Association of Palaeontologists 32, 123–40.Google Scholar
Hupé, P (1950) Étude statistique de l’évolution du cephalon chez les trilobites Proparia et Opistoparia. Bulletin de la Société Géologique de France 5, 924.CrossRefGoogle Scholar
Hupé, P (1952) Sur les zones de trilobites du Cambrien inférieur marocain. Comptes Rendus de l’Académie des Sciences, Paris 235, 481.Google Scholar
Hupé, P (1953a) Contribution à l’étude du Cambrien inférieur et du Précambrien III de l’Anti-Atlas marocain. Notes et Mémoirs de la Service géologique du Maroc 103, 402 pp.Google Scholar
Hupé, P (1953b) Classification des trilobites. Annales de Paléontologie 39, 61168.Google Scholar
Hupé, P and Abadie, J (1950) Sur l’existence de Trilobites du Cambrien inférieur asiatique dans l’Anti-Atlas marocain. Comptes Rendus de l’Académie des Sciences 230, 2112–13.Google Scholar
Jaffey, AH, Flynn, KF, Glendenin, LE, Bentley, WC and Essling, AM (1971Precision measurements of half-lives and specific activities of 235U and 238UPhysical Reviews C 4, 889906.CrossRefGoogle Scholar
Keppie, JD and Keppie, DF (2014) Ediacaran–Middle Paleozoic oceanic voyage of Avalonia from Baltica via Gondwana to Laurentia: Paleomagnetic, faunal and geological constraints. Geoscience Canada 41, 518, doi: 10.12789/geocanj.2014.41.039.CrossRefGoogle Scholar
Khomentovsky, VV and Repina, LN (1965) Nizhniy kembriy stratotipicheskogo razreza Sibiri (Lower Cambrian of the stratotype section of Siberia). Nauka, Moscow, 200 pp.Google Scholar
Kirschvink, JL, Magaritz, M, Ripperdan, RL, Zhuravlev, AYu and Rozanov, AYu (1991) The Precambrian/Cambrian boundary: magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today 1, 6971, 87, 88.Google Scholar
Landing, E (1994) Precambrian–Cambrian global stratotype ratified and a new perspective of Cambrian time. Geology 22, 179–82.2.3.CO;2>CrossRefGoogle Scholar
Landing, E (1996) Avalon—Insular continent by the latest Precambrian. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, RD and Thompson, M), pp. 2764. Geological Society of America, Special Paper no. 304.Google Scholar
Landing, E (2005) Early Paleozoic Avalon–Gondwana unity: an obituary—response to ‘Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions’ by RA Fortey and LRM Cocks. Earth-Science Reviews 69, 169–75.CrossRefGoogle Scholar
Landing, E, Antcliffe, J, Geyer, G, Kouchinsky, A, Andreas, AA and Bowser, SS (2018) Early evolution of colonial animals (Ediacaran Evolutionary Revolution–Cambrian Evolutionary Radiation–Great Ordovician Diversification Interval). Earth-Science Reviews 178, 105–35, doi:10.1016/j.esrrev.2018.01.013.CrossRefGoogle Scholar
Landing, E, Davidek, K, Westrop, SR, Geyer, G and Heldmaier, W (1998) Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences 35, 329–38.CrossRefGoogle Scholar
Landing, E, Geyer, G, Brasier, MD and Bowring, SA (2013) Cambrian Evolutionary Radiation: context, correlations, and chronostratigraphy—overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science Reviews 123, 133–77, doi:10.10.1016/jearscirev.2013.008.CrossRefGoogle Scholar
Landing, E, Geyer, G and Heldmaier, W (2006) Distinguishing eustatic and epeirogenic controls on Lower–Middle Cambrian boundary successions in West Gondwana (Morocco and Iberia). Sedimentology 54, 899918.CrossRefGoogle Scholar
Landing, E and Kouchinsky, A (2016) Correlation of the Cambrian Evolutionary Radiation: geochronology, evolutionary stasis of earliest Cambrian (Terreneuvian) small shelly fossil (SSF) taxa, and chronostratigraphic significance. Geological Magazine 153, 750–57, doi:10.10171/S007675815001098.CrossRefGoogle Scholar
Landing, E, Myrow, PM, Narbonne, GM, Geyer, G, Bautois, LA, Mángano, MG, Kaufman, AJ, Westrop, SR, Kröger, B, Liang, B and Gougain, R (2017) Ediacaran–Cambrian of Avalonian Eastern Newfoundland (Avalon, Burin, and Bonavista Peninsulas). International Symposium on the Ediacaran–Cambrian Transition, Field Trip 4. The International Subcommission on Ediacaran Stratigraphy (ICES) and The International Subcommission on Cambrian Stratigraphy, St. John’s, Newfoundland, June 15–29, 2017. Newfoundland and Labrador Geological Survey, Open File, NFLD/3323, 165 p.Google Scholar
Landing, E and Westrop, SR (2004) Environmental patterns in the origin and evolution loci of Early Cambrian skeletalized Metazoa: evidence from the Avalon microcontinent. In Neoproterozoic–Cambrian Biological Revolutions (eds Lipps, JH and Waggoner, B), pp. 93105. Paleontological Society, Special Paper no. 10.Google Scholar
Landing, E, Westrop, SR and Bowring, SA (2013) Reconstructing the Avalonia palaeocontinent in the Cambrian: a 519 Ma caliche in South Wales and transcontinental middle Terreneuvian Epoch sandstones. Geological Magazine 150, 1022–46, doi:10.1017/S00167681300228.CrossRefGoogle Scholar
Latham, A and Riding, R (1990) Fossil evidence for the location of the Precambrian/Cambrian boundary in Morocco. Nature 344, 752–4.CrossRefGoogle Scholar
Lieberman, BS (2001) Phylogenetic analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian). Journal of Paleontology 75, 96115.2.0.CO;2>CrossRefGoogle Scholar
Liñán, E, Gámez Vintaned, JA and Gozalo, R (2008a) The middle lower Cambrian (Ovetian) Lunagraulos n. gen. from Spain and the oldest trilobite records. Geological Magazine 152, 1123–36.CrossRefGoogle Scholar
Liñán, E, Gozalo, R, Dies Álvarez, ME, Gámez Vintaned, JA and Zamora, S (2008b) Nuevos trilobites del Ovetiense inferior (Cámbrico Inferior bajo) de Sierra Morena (España). Ameghiniana 45, 123–38.Google Scholar
Liñán, E, Perejón, A and Sdzuy, K (1993) The Lower–Middle Cambrian stages and stratotypes from the Iberian Peninsula: a revision. Geological Magazine 130, 817–33.CrossRefGoogle Scholar
Liñán, E and Sdzuy, K (1978) A trilobite from the Lower Cambrian of Córdoba (Spain) and its stratigraphical significance. Senckenbergiana lethaea 59, 387–99.Google Scholar
Linnemann, U, Ovtcharova, M, Schaltegger, U, Gärtner, A, Hautmann, M, Geyer, G, Vickers-Rich, P, Rich, T, Plessen, B, Hofmann, M, Ziegler, J, Krause, R, Kriesfeld, L and Smith, J (2019) New high resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion. Terra Nova 31, 4958, doi: 10.1111/ter.12368.CrossRefGoogle Scholar
MacDonald, FA, Schmitz, MD, Strauss, JV, Halverson, GP, Gibson, TM, Eyster, A, Cox, G, Mamrol, P and Crowley, JL (2018) Cryogenian of Yukon. Precambrian Research 319, 114–43.CrossRefGoogle Scholar
Magaritz, M, Kirschvink, J, Latham, A, Zhuravlev, AYu and Rozanov, AY (1991) Precambrian/Cambrian boundary problem: carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19, 847–50.2.3.CO;2>CrossRefGoogle Scholar
Maloof, AC, Porter, SH, More, JL, Dudás, , Bowring, SA, Higgins, JA, Fike, DA and Eddy, MP (2010) The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.CrossRefGoogle Scholar
Maloof, AC, Schrag, DP, Crowley, JL and Bowring, SA (2005) An expanded record of Early Cambrian carbon recycling from the Anti-Atlas margin. Canadian Journal of Earth Sciences 42, 2195–216.CrossRefGoogle Scholar
Marshall, CR (1990) Confidence intervals on stratigraphic ranges. Paleobiology 16, 110.CrossRefGoogle Scholar
Mattinson, JM (2005) Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.CrossRefGoogle Scholar
McLean, NM, Condon, DJ, Schoene, B and Bowring, SA (2015) Evaluating uncertainties in the calibration of isotopic reference materials and multielement isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochimica et Cosmochimica Acta 164, 481501.CrossRefGoogle Scholar
Meert, JG and Lieberman, BS (2004) A palaeomagnetic and palaeobiogeographic perspective on latest Neoproterozoic and early Cambrian tectonic events. Journal of the Geological Society, London 161, 111.CrossRefGoogle Scholar
Meert, JG and Lieberman, BS (2008) The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian Radiation. Gondwana Research 1, 521.CrossRefGoogle Scholar
Mifdal, A and Peucat, J-J (1985) Datations U-Pb et Rb-Sr du volcanisme acide de l’Anti-Atlas Marocain et du socle sous-jacent dans la région de Ouarzazate. Apport au problème de la limite Précambrien - Cambrien. Bulletin des Sciences Géologiques 38, 185200.CrossRefGoogle Scholar
Monninger, W (1979) The section of Tiout (Precambrian/Cambrian boundary beds, Anti-Atlas, Morocco): an environmental model. Arbeiten aus dem Paläontologischen Institut Würzburg 1, 289 pp.Google Scholar
Murphy, JB, Nance, RD, Keppie, JD and Dostal, J (2018) Role of Avalonia in the development of tectonic paradigms. In Fifty Years of the Wilson Cycle Concept in Plate Tectonics (eds Wilson, RW, Houseman, GA, McCaffrey, KJ, Dore, AG and Buiter, SJH), p. 26. Geological Society of London, Special Publication no. 470, https://doi.org/10.1144/SP470.12. Google Scholar
Nasdala, L, Christian, L, Lengauer, CL, Hanchar, JM, Kronz, A, Wirth, R, Philippe, Blanc P, Kennedy, AK and Seydoux-Guillaume, A-M (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chemical Geology 191, 121–40.CrossRefGoogle Scholar
Nelson, CA (1978) Late Precambrian-Early Cambrian stratigraphic and faunal succession of eastern California and the Precambrian-Cambrian boundary. Geological Magazine 115, 121–6.CrossRefGoogle Scholar
Nelson, CA and Hupé, P (1964) Sur l’existence de Fallotaspis et Daguinaspis, trilobites marocains, dans le Cambrien inférieur de Californie, et ses conséquences. Comptes Rendus de l’Académie des Sciences, Paris 258, 621–3.Google Scholar
Neltner, L (1938) Études géologiques dans le Sud marocain (Haut Atlas et Anti-Atlas). Notes et Mémoires du Service au Mines et Carte géologique du Maroc 42, 298.Google Scholar
Neltner, L and Poctey, N (1950) Quelques faunes géorgiennes du Maroc. Notes et Mémoires du Service Geologique du Maroc 2, 5383.Google Scholar
Palmer, AR and Repina, LN (1993) Through a glass darkly: taxonomy, phylogeny, and biostratigraphy of the Olenellina. The University of Kansas Paleontological Contributions, New Series 3, 135.Google Scholar
Palmer, AR and Rowell, AJ (1995) Early Cambrian trilobites from the Shackleton Limestone of the Central Transantarctic Mountains. The Paleontological Society Memoir 45, 128.Google Scholar
Peng, S and Babcock, LE (2005) Towards a new global subdivision of the Cambrian System. Journal of Stratigraphy 29, 171–8.Google Scholar
Peng, S and Babcock, LE (2011) Continuing progress on chronostratigraphic subdivision of the Cambrian System. Bulletin of Geosciences 86, 391–6.CrossRefGoogle Scholar
Peng, S, Babcock, LE and Cooper, RA (2012) The Cambrian Period. In The Geologic Time Scale, Volume 2 (eds Gradstein, FM, Ogg, JG, Schmitz, MD and Ogg, GM), pp. 437–88. Amsterdam: Elsevier.CrossRefGoogle Scholar
Perejón, A (1986) Bioestratigrafía de los Arqueociatos en España. Cuadernos de Geología Ibérica 9, 212–66.Google Scholar
Perejón, A (1994) Palaeogeographic and biostratigraphic distribution of Archaeocyatha in Spain. Courier Forschungs-Institut Senckenberg 172, 341–54.Google Scholar
Rozanov, AY and Debrenne, F (1974) Age of archaeocyathid assemblages. American Journal of Science 274, 833–48.CrossRefGoogle Scholar
Rushton, AWA, Brück, PM, Molyneux, SG, Williams, M and Woodcock, NH (2011) A revised correlation of the Cambrian rocks in the British Isles. Geological Society of London, Special Report 25, 21–7.Google Scholar
Schmitt, M (1979) The section of Tiout (Precambrian/Cambrian boundary beds, Anti-Atlas, Moroco): Stromatolites and their biostratigraphy. Arbeiten aus dem Paläontologischen Institut Würzburg 2, 188.Google Scholar
Schmitz, MD and Davydov, VI (2012) Quantitative radiometric and biostratigraphic calibration of the global Pennsylvanian–Early Permian time scale. Geological Society of America Bulletin 124, 549–77.CrossRefGoogle Scholar
Schmitz, MD and Schoene, B (2007) Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data, Geochemistry, Geophysics, Geosystems 8, Q08006, doi: 10.1029/2006GC001492.CrossRefGoogle Scholar
Sdzuy, K (1961) Das Kambrium Spaniens. Teil II: Trilobiten. Akademie der Wissenschaften und der Literatur, Abhandlungen der mathematisch-naturwissenschaftlichen Klasse 1961, 499690 (217–408).Google Scholar
Sdzuy, K (1978) The Precambrian–Cambrian boundary beds in Morocco (Preliminary report). Geological Magazine 115, 8394.CrossRefGoogle Scholar
Sdzuy, K (1981) Der Beginn des Phanerozoikums — Paläobiologische und stratigraphische Problema. Natur und Museum 111, 390–99.Google Scholar
Sláma, J, Jan, Košler J, Condon, DJ, Crowley, JL, Gerdes, A, Hanchar, JM, Horstwood, MSA, Morris, GA, Nasdala, L, Norberg, N, Schaltegger, U, Schoene, B, Tubrett, MN and Whitehouse, MJ (2008) Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Stacey, JS and Kramers, JD (1975) Approximation of terrestrial lead isotope evolution by a 2-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Trayler, RB, Schmitz, MD, Cuitiño, JI, Kohn, MJ, Bargo, MS, Kay, RF, Strömberg, CAE and Vizcaíno, SF (2019) An improved approach to age-modeling in deep time: Implications for the Santa Cruz Formation, Argentina. GSA Bulletin 112, doi:10.1130/B35203.1. Google Scholar
Tucker, M (1986) Carbon isotope excursions in Precambrian/Cambrian boundary beds. Nature 319, 49.CrossRefGoogle Scholar
Varlamov, AI, Rozanov, AY, Khomentovsky, VV, Shabanov, YY, Abaimova, GP, Demidenko, YE, Karlova, GA, Korovnikov, IV, Luchinina, VA, Malakhovskaya, YE, Parkhaev, PY, Pegel, TV, Skorlotova, NA, Sundukov, VM, Sukhov, SS, Fedorov, AB and Kipriyanova, LD (2008) The Cambrian System of the Siberian Platform. Part 1: The Aldan-Lena region. In XIII Field Conference of the Cambrian Stage Subcommission Working Group. Yakutia, Russia, July 20–August 1, 2008. Moscow, Novosibirsk: PIN Russian Academy of Science, 300 p.Google Scholar
Walsh, GJ, Aleinikoff, JN, Benziane, F, Yazidi, A and Armstrong, TR (2002) U-Pb zircon geochronology of the Paleoproterozoic Tagragra de Tata inlier and its Neoproterozoic cover, western Anti-Atlas, Morocco. Precambrian Research 117, 120.CrossRefGoogle Scholar
Wendt, I and Carl, C (1991) The statistical distribution of the Mean Squared Weighted Deviation. Chemical Geology 86, 275–85.Google Scholar
Williams, M, Rushton, AWA, Cook, AF, Zalasiewicz, J, Martin, AP, Condon, DJ and Winrow, P (2013) Dating the Purley Shale Formation, Midland microcraton, England. Geological Magazine 150, 937–44.Google Scholar
Zhuravlev, AYu (1995) Preliminary suggestions on the global Early Cambrian zonation. Beringeria Special Issue 2, 147–60.Google Scholar
Supplementary material: File

Landing et al. supplementary material

Landing et al. supplementary material

Download Landing et al. supplementary material(File)
File 7.9 MB