Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T10:34:24.282Z Has data issue: false hasContentIssue false

Recent and ancient fluvial deposition systems in the Amazonian foreland basin, Peru

Published online by Cambridge University Press:  01 May 2009

Matti Räsänen
Affiliation:
Department of Quaternary Geology, University of Turku, SF-20500 Turku, Finland
Ron Neller
Affiliation:
Department of Geography, The Chinese University of Hong Kong, Shatin, NT., Hong Kong
Jukka Salo
Affiliation:
Department of Biology, University of Turku, SF-20500 Turku, Finland
Högne Jungner
Affiliation:
Radiocarbon Dating Laboratory, University of Helsinki, SF-00170 Helsinki, Finland

Abstract

Still active Sub-Andean foreland deformation is suggested to have syndepositionally modified the fluvial depositional environments in the Peruvian Amazonian foreland basin throughout Neogene-Quaternary time. Modern fluvial aggradation continues to proceed on a large scale (c. 120 000 km2) in two differing depositional systems. Firstly, various multistoried floodbasin deposits are derived from the meandering and anastomosing rivers within the subsiding intraforeland basins. Secondly, in the northern part of the Pastaza-Marañon basin the largest known Holocene alluvial fan-like formation (c. 60 000 km2) composed of reworked, volcaniclastic debris derived from active Ecuadorian volcanoes, has been identified.

The widespread, poorly known, dissected surface alluvium (terra firme) which covers the main part of the Peruvian Amazonian foreland basin shows further evidence of long-term foreland deformation, and terraces indicate both the effects of tectonism and Pleistocene climatic oscillations. In northern Peru, the surface alluvium was deposited by a Tertiary fluvial system with palaeocurrents to the west and northwest into the Andean foreland basin. In southern Peru, the respective surficial alluvium was part of a post-Miocene fluvial system flowing northeast into the main Amazon basin. Both systems were gradually abandoned when the eastward migrating Andean foreland deformation led to the more distinctive partitioning of the intraforeland basins, and the modern drainage system was created.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, C. E. 1983. Geodynamics of Ecuador. In Geodynamics of the Equadorian Pacific Region and Scotia Arcs. Geodynamic Series Vol. 9 (ed. Ramúnd Cabré, S. J.), pp. 5363. American Geophysical Union, Geological Society of America.CrossRefGoogle Scholar
Ahmad, F. 1989. Man, environment and geology since 2000 B.C. in Indo-Gangetic Valley. In 28th International Geological Congress, Abstracts, Vol. 3 of 3, p. 18. Washington, D.C.Google Scholar
Baldock, J. W. 1982. Geology of Ecuador, Explanatory Bulletin of the National Geological Map of the Republic of Ecuador 1: 1,000,000 Scale. Quito: Dirección General de Geología y Minas, 70 pp.Google Scholar
Bonnemaison, M., Fornari, M., Galloso, A., Grandin, G., Herail, G., Jungbluth, R., Lauhacher, G., Rodriquez, W., Vergura, J. & Zegarra, J. 1985. Evolución Geomorphológica y Placeres de Oro en los Andes Surorientales del Perú. Boletíu de la Sociedad Geológica del Perú 75, 1332.Google Scholar
Bush, M. B. & Colinvaux, P. A. 1988. A 7000-year pollen record from the Amazonian lowlands, Ecuador. Vegetatio 76, 141–54.CrossRefGoogle Scholar
Bush, M. B. & Colinvaux, P. A. 1990. A pollen record of a complete glacial cycle from lowland Panama. Journal of Vegetation Science 1, 105–18.CrossRefGoogle Scholar
Campbell, K. E. 1990. The geologic basis of biogeographic patterns in Amazonia. In Vertebrates in the Tropics (eds Peters, G. and Hutterer, R.), pp. 3343. Bonn: Museum Alexander Koenig.Google Scholar
Campbell, K. E. & Frailey, D. 1984. Holocene flooding and species diversity in Southwestern Amazonia. Quaternary Research 21, 369–75.CrossRefGoogle Scholar
Campbell, K. E., Frailey, C. D. & Arellana, L. J. 1985. The geology of the rio Beni: further evidence for Holocene flooding in Amazonia. Contributions in Science 364, 118.CrossRefGoogle Scholar
Cisternas, A., Dorbath, L. & Dorbath, C. 1988. A study of subandean seismicity in central Peru. In VIIth Latin American Geological Congress (ed. das Gracas de Andrade da Mata Rezende, N.), p. 322. Belém: Brazilian Society of Geology.Google Scholar
Clapperton, C. M. 1990. Glacial and volcanic geomorphology of the Chimborazo–Carihuairazo Massif, Ecuadorian Andes. Transactions of the Royal Society of Edinburgh: Earth Sciences 81, 91116.CrossRefGoogle Scholar
Colinvaux, P. A. 1987. Amazon diversity in light of the paleoecological record. Quarternary Science Reviews 6, 93114.CrossRefGoogle Scholar
Colinvaux, P. A., Miller, M. C., Liu, K. B., Steinitzkannan, M. & Frost, I. 1985. Discovery of permanent Amazon lakes and hydraulic disturbance in the upper Amazon river. Nature 313, 42–5.CrossRefGoogle Scholar
Cunha, F. M. B. 1988. Controle tectônico-estructural na hidrografia da região do Alto Amazonas. In Anais do XXXV Congresso Brasileiro de Geologia, 5, pp. 2267–77. Belém: Sociedade Brasileira de Geologia.Google Scholar
DeCelles, P. G. & Hertel, F. 1989. Petrology of fluvial sands from the Amazonian foreland basin, Peru and Bolivia. Geological Society of America Bulletin 101, 1552–62.2.3.CO;2>CrossRefGoogle Scholar
Dumont, J. F. 1989. Neotectónica y dinámica fluvial de la baja Amazonia Peruana. Boletin de Ia Sociedad Geológica del Perú 80, 5164.Google Scholar
Dumont, J. F. & Carcia, F. 1990. Neotectonics of the Andean foredeep basin (Marañon basin) in north-eastern Peru. In International Symposium on Andean Geodvnamics, pp. 107–10. Paris: Institut Français de Recherche Scientifique pour Ic développement en Coopération ORSTOM.Google Scholar
Dumont, J. F. & Carcia, F. 1991. Active subsidence controlled by basement structures in the Marañon basin of northeastern Peru. In Land Subsidence, pp. 343–50. Proceedings of the Fourth International Symposium on Land Subsidence,May 1991. IAHS Publication no. 200.Google Scholar
Dumont, J. F., Lamotte, S. & Fournier, M. 1988. Neotectónica del Acro de Iquitos (Jenaro Herrera, Perú). Boletin Sociedad Geológica del Perú 77, 718.Google Scholar
Dumont, J. F., Lamotte, S. & Kahn, F. 1990. Wetland and upland forest ecosystems in Peruvian Amazonia: plant species diversity in the light of some geological and botanical evidence. Forest Ecology and Management 33/ 34, 125–39.CrossRefGoogle Scholar
Figueroa, E., Oviedo, C., Vela, C., Sierra, R., Balslev, H., Torres, J., Carrasco, A. & De Vries, T. 1987. Evaluación del impacto ambiental del sismo en la Amazonia. Quito: Fundación Natura, 230 pp.Google Scholar
Frailey, C. D., Lavina, E. L., Rancy, A. & De Souza Filho, J. P. 1988. A proposed Pleistocene/Holocene lake in the Amazon basin and its significance to Amazonian geology and biogeography. Acta Amazonica 18, 119–43.CrossRefGoogle Scholar
Frost, I. 1988. A Holocene sedimentary record from Anañgucocha in the Ecuadorian Amazon. Ecology 69, 6673.CrossRefGoogle Scholar
Hall, M. L. 1977. El Volcanismo en El Ecuador. Quito: Instituto Panamericana Geográfico Historico, 120 pp.Google Scholar
Hoorn, C. 1988. Nota preliminar sobre la edad de los sedimentos Terciarios de la zona de Araracuara (Amazonas). Boletin Geologico 29, 8795.Google Scholar
IFG. 1984. Mapa Planimétrico de Imagenes de Satelite 1:250,000. Neu Isenburg: Institute for Applied Geosciences.Google Scholar
Inemin. 1984. Proyecto Oriente Mapa de Compilación Geológica de la Provincia del Napo. Quito: Instituto Ecuatoriano de Minería.Google Scholar
Inemin. 1987. Mapa geológico de Las Provincias Orientales. Quito: Instituto Ecuatoriano de Mineria, 39 pp.Google Scholar
Instituto Geológico Del Perú 1975. Mapa Geológico del Perú. Lima: Ministerio de Energia y Minas.Google Scholar
Isacks, B. L. 1988. Uplift of the Central Andean Plateau and bending of the Bolivian orocline. Journal of Geophysical Research 93, (B4), 3211–31.CrossRefGoogle Scholar
Johnson, O. D. & Vondra, C. F. 1972. Siwalik sediments in a portion of the Punjab re-entrant: the sequence at Haritalyangar; District Bilaspur, H.P. Himalayan Geology 3, 118–44.Google Scholar
Jordan, T. E. & Alonso, R. N. 1987. Cenozoic stratigraphy and basin tectonics of the Andes mountains, 20–28 south latitude. American Association of Petroleum Geologists Bulletin 71, 4964.Google Scholar
Jordan, T. E., Isacks, B. L., Allmendinger, R. W., Brewer, J. A., Ramos, V. A. & Ando, C. J. 1983. Andean tectonics related to geometry of subducted Nazca plate. Geological Society of America Bulletin 94, 341–61.2.0.CO;2>CrossRefGoogle Scholar
Khan, M. J., Opdyke, N. D. & Tahirkheli, R. A. K. 1988. Magnetic stratigraphy of the Siwalik Group, Bhittani, Marwat and Khasor Ranges, Northwestern Pakistan and the Timing of Neogene tectonics of the Trans Indus. Journal of Geophysical Research 93, (B), 11773–90.CrossRefGoogle Scholar
Koch, E. 1959. Unos apuntoes sobre la gcomorfología del Río Ucayali (Oriente Peruano). Boletín de la Sociedad Geolígica del Perí 34, 3241.Google Scholar
Kroonenberg, S. B., Bakker, J. O. M. & Van Der Wiel, M. 1990. Late Cenozoic uplift and paleogeography of the Colombian Andes: constraints on the development of high-andean biota. Geologie en Mijnbouw 69, 279–90.Google Scholar
Kuenzi, W. D., Horst, O. H. & McGehee, R. V. 1979. Effect of volcanic activity of fluvial-deltaic sedimentation in a modern arch-trench gap, southwestern Guatemala. Geological Society of American Bulletin 90, 827–38.2.0.CO;2>CrossRefGoogle Scholar
Liu, K. & Colinvaux, P. A. 1985. Forest changes in the Amazon Basin during the last glacial maximum. Nature 318, 556–7.CrossRefGoogle Scholar
Liu, K. & Colinvaux, P. A. 1988. A 5200-year history of Amazon rain forest. Journal of Biogeography 15, 23CrossRefGoogle Scholar
Lonsdale, P. 1978. Ecuadorian subduction system. American Association of Petroleum Geologists Bulletin 62, 2454–77.Google Scholar
Macharé, J., Sébrier, M., Huamán, D. & Mercier, J. L. 1986. Tectónica cenozoica de la margen continental peruana. Boletin de la Sociedad Geológica del Perú 76, 4578.Google Scholar
Mégrad, F. 1984. The Andean orogenic period and its major structures in central and northern Peru. Journal of the Geological Society, London 141, 893900.CrossRefGoogle Scholar
Mégard, F. 1987. Structure and evolution of the Peruvian Andes. In The Anatomy of Mountain Ranges (eds Schaer, J.-P. and Rodgers, J.), pp. 179210. Princeton: Princeton University Press.CrossRefGoogle Scholar
Mégard, F. & Philip, H. 1976. Plio-quaternary tectonomagmatic zonation and plate tectonics in the central Andes. Earth and Planetary Science Letters 33, 231–8.CrossRefGoogle Scholar
Miall, A. D. 1978. Tectonic setting and syndepositional deformation of molasse and other non-marine–paralic sedimentary basins. Canadian Journal of Earth Sciences 15, 1613–32.CrossRefGoogle Scholar
Moore, H. E. 1973. Palms in the tropical forest ecosystems of Africa and South America. In Tropical Forest Ecosystems of Africa and South America (eds Meggers, B. J., Ayensu, E. S. and Duckworth, W. D.), pp. 6388. Washington, D.C.: Smithsonian Institution Press.Google Scholar
Morgan, J. P. & McIntyre, W. G. 1959. Quaternary geology of the Bengal Basin, East Pakistan and India. Bulletin of the Geological Society of America 70, 319–42.CrossRefGoogle Scholar
Neller, R., Salo, J. & Räsänen, M. in press. On the formation of blocked valley lakes by channel avulsion in upper Amazon foreland basins. Zeitschr für Geomorphologie.Google Scholar
Ocola, L. 1966. Earthquake activity of Peru. In The Earth Beneath the Continents (eds Steinhart, J. S. and Smith, T. S.) pp. 509–28. American Geophysical Union Geophysical Monographs no. 10.Google Scholar
Onern 1984. Inveniario, evaluación e integración de los recursos naturales de la microregión Pastaza–Tigre. Oficina Nacional de Evaluación de Recursos Naturales, Lima, 224 pp.Google Scholar
Petri, S. & Fülfaro, V. J. 1988. Geologia do Brasil. Editora da Universidade de São Paulo, Biblioteca de Ciencias Naturais 9, 1631.Google Scholar
Projeto Radambrasil, , 1976. Levantamento de Recursos Naturais, vol. 12, Rio de Janeiro: Ministério das Minas e Energía, Departamento Nacional da Produção Mineral, 458 pp.Google Scholar
Projeto Radambrasil, , 1977 a. Levantamento de Recursos Naturais, vol. 13, Rio de Janeiro: Ministério das Minas e Energía, Departamento Nacional da Produção Mineral, 413 pp.Google Scholar
Projeto Radambrasil, , 1977 b. Levantamento de Recursos Naturais, vol. 14, Rio de Janeiro: Ministério das Minas e Energía, Departamento Nacional da Produção Mineral, 446 pp.Google Scholar
Read, W. A. & Dean, M. 1982. Quantitative relationship between numbers of fluvial cycles, bulk lithological composition and net subsidence in a Scottish Namurian basin. Sedimentology 29, 181200.CrossRefGoogle Scholar
Räsänen, M. 1991. History of the fluvial and alluvial landscapes of the Western Amazon lowlands. Annales Universitatis Turkuensis Ser. A II. Biologica–Geographica–Geologica 75, 96 pp.Google Scholar
Räsänen, M., Salo, J. & Jungner, H. in press. Holocene floodplain lake sediments in the Amazon: 14C dating and palaeoecological use. Quaternary Science Reviews 10.Google Scholar
Räsänen, M., Salo, J., Jungner, H. & Romero Pittman, L. 1990. Evolution of the Western Amazon Lowland Relief: impact of Andean foreland dynamics. Terra Nova 2, 320–32.CrossRefGoogle Scholar
Räsänen, M., Salo, J. & Kalliola, R. 1987. Fluvial perturbance in the western Amazon basin: regulation by long-term sub-Andean tectonics. Science 238, 1398–401.CrossRefGoogle ScholarPubMed
Salo, J. 1987. Pleistocene forest refuges in the Amazon: evaluation of the biostratigraphical, lithostratigraphical and geomorphological data. Annales Zoologici Fennici 24, 203–11.Google Scholar
Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M. & Coley, P. D. 1986. River dynamics and the diversity of Amazon lowland forest. Nature 322, 254–8.CrossRefGoogle Scholar
Schubert, C. & Clapperton, C. M. 1990. Quaternary glaciations in the Northern Andes (Venezuela, Colombia and Ecuador). Quaternary Science Reviews 9, 123–35.CrossRefGoogle Scholar
Sioli, H. 1984. The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In The Amazon (ed. Sioli, H.), pp. 127–63. Dordrecht: Dr W. Junk.CrossRefGoogle Scholar
Smith, D. U. & Putnam, P. E. 1980. Anastomosed river deposits: modern and ancient examples in Alberta, Canada. Canadian Journal of Earth Sciences 17, 1395–406.CrossRefGoogle Scholar
Suarez, G., Molnar, P. & Burchfield, B. C. 1983. Seismicity, fault plane solutions, depth of faulting, and active tectonics of the Andes of Peru, Ecuador, and southern Colombia. Journal of Geophysical Research 88 (B12), 10403–28.CrossRefGoogle Scholar
Van Der Hammen, T. 1982. Palaeoecology of tropical South America. In Biological Diverssification in the Tropics (ed. Prance, G. T.), pp. 60–6. New York: Columbia University Press.Google Scholar
Vessel, R. K. & Davies, D. K. 1981. Non-marine sedimentation in an active fore arc basin. In Recent and Ancient Nonmarine Depositional Environments: Models for Exploration (eds Erthridge, F. G. and Flores, R. M.), pp. 3145. Tulsa: Society of Economic Paleontologists and Minerologists, Special Publication no. 31.CrossRefGoogle Scholar
Villarejo, A. 1979. Asi es la Selva. Iquitos: CETA, 348 pp.Google Scholar
Wells, N. A. & Dorr, J. A. Jr. 1987. Shifting of the Kosi River, northern India. Geology 15, 204–7.2.0.CO;2>CrossRefGoogle Scholar