Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T10:37:57.241Z Has data issue: false hasContentIssue false

Sand-wave immobility and the internal master bedding of sand-wave deposits

Published online by Cambridge University Press:  01 May 2009

J. R. L. Allen
Affiliation:
Department of Geology, The University, Reading RG6 2AB, U.K.

Summary

Sand waves are such comparatively immobile transverse bedforms because they occur in tide-induced oscillatory bottom boundary layers typified by a steady velocity-component that generally is small compared to the amplitude of the periodic part. Consequently, the net bed-material transport rates, responsible for the long-term translation of the sand waves, typically are very small compared with the larger of the instantaneous rates. Sand waves should, therefore, be marked internally by series of erosional or, under restricted circumstances, non-depositional master bedding surfaces, each such surface, together with an associated comparatively thin sediment increment, being attributable to one sand-driving tide. Studies of modern sand waves, and investigations in the stratigraphic record, lend support to this conclusion. A further consequence of the regime of intense reworking under which sand waves exist is that their component grains should be in all ways more mature, other things being equal, than particles transported the same net distance by rivers.

Type
Articles
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, J. R. & Dyer, C. M. 1975. Mapping of tidal currents near the Skerries Bank. Jl geol. Soc. Lond. 131, 63–7.CrossRefGoogle Scholar
Allen, J. R. L. 1980. Large transverse bedforms and the character of boundary layers in shallow-water environments. Sedimentology (in the press).Google Scholar
Allen, J. R. L. & Narayan, J. 1964. Cross-stratified units, some with silt bands, in the Folkestone Beds (Lower Greensand) of southeast England. Geologie Mijnb. 43, 451–61.Google Scholar
Anderton, R. 1976. Tidal-shelf sedimentation: an example from the Scottish Dalradian. Sedimentology, 23, 429–58.CrossRefGoogle Scholar
Bagnold, R. A. 1966. An approach to the sediment transport problem from general physics. Prof. Pap. U.S. geol. Surv. 422–I.Google Scholar
Bokuniewicz, H. J., Gordon, R. B. & Kastens, K. A. 1977. Form and migration of sand waves in a large estuary, Long Island Sound. Marine Geology 24, 185–99.CrossRefGoogle Scholar
Boothroyd, J. C. & Hubbard, D. K. 1974. Bed form development and distribution pattern, Parker and Essex Estuaries, Massachusetts. Misc. Pap. Coastal Engng Res. Center U.S., No. 174.Google Scholar
Carey, W. C. & Keller, M. D. 1957. Systematic changes in the beds of alluvial rivers. J. Hydraulics Div. Am. Soc. civ. Engrs 83, paper no. 1331.Google Scholar
Carruthers, J. N. 1963. History, sand waves and near-bed currents of La Chapelle Bank. Nature, Lond. 197, 942–6.CrossRefGoogle Scholar
Cartwright, D. E. & Stride, A. H. 1958. Large sand waves near the edge of the continental shelf. Nature, Lond. 181, 41.CrossRefGoogle Scholar
Colby, B. R. 1964. Discharge of sands and mean-velocity relationships in sand-bed streams. Prof. Pap. U.S. geol. Surv. 462-A.Google Scholar
Dalrymple, R. W., Knight, R. J. & Lambiase, J. J. 1978. Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature, Lond. 275, 100104.CrossRefGoogle Scholar
Dalrymple, R. W., Knight, R. J. & Middleton, G. V. 1975. Intertidal sand bars in Cobequid Bay (Bay of Fundy). In Estuarine Research, vol. 2 (ed. Cronin, L. E.), pp. 293307. New York: Academic Press.Google Scholar
De Raaf, J. F. M. & Boersma, J. R. 1971. Tidal deposits and their sedimentary structures. Geologie Mijnb. 50, 479504.Google Scholar
Hine, A. C. 1977. Lily Bank, Bahamas: history of an active oolite sand shoal. J. sediment. Petrol. 47, 2554–81.Google Scholar
Hinschberger, F. 1963. Les hauts-fonds sableux de l'Iroise et leurs rapports avec les courants de marée. Bull. Sect. Géogr. Com. Trav. hist. scient. 75, 5380.Google Scholar
Hinschberger, F., Saint-Requier, A. & Toulemont, A. 1967. Recherches sédimentologiques et écologiques sur les fond sous-marins dans les parages de la Chaussée de Sein (Finistère). Rev. Trav. Inst. (scient. techn.) Pech. marit. 31, 425–45.Google Scholar
Hunt, J. N. & Johns, B. 1963. Currents induced by tides and gravity waves. Tellus 15, 343–51.CrossRefGoogle Scholar
Jackson, R. G. 1976. Large scale ripples of the Lower Wabash River. Sedimentology 23, 593623.CrossRefGoogle Scholar
Johnson, H. D. 1975. Tide- and wave-dominated inshore and shoreline sequences from the late Precambrian, Finmark, north Norway. Sedimentology 22, 4574.CrossRefGoogle Scholar
Jones, N. S., Kain, J. M. & Stride, A. H. 1965. The movement of sand waves on Warts Bank, Isle of Man. Marine Geology 3, 329–36.CrossRefGoogle Scholar
Klein, G. deV. 1970. Depositional and dispersal dynamics of intertidal sand bars. J. sedim. Petrol. 40, 10951127.Google Scholar
Langeraar, W. 1966. Sand waves in the North Sea. Hydrographical Newsletter 1, 243–6.Google Scholar
Ludwick, J. C. 1970. Sand waves and tidal channels in the entrance to Chesapeake Bay. Technical Report, Institute of Oceanography, Old Dominion University, Norfolk, Virginia, no. 1.Google Scholar
Ludwick, J. C. 1971. Migration of tidal sand waves in Chesapeake Bay entrance. Technical Report, Institute of Oceanography, Old Dominion University, Norfolk, Virginia, no. 2.Google Scholar
McCave, I. N. 1971. Sand waves in the North Sea off the coast of Holland. Marine Geology 10, 199225.CrossRefGoogle Scholar
Narayan, J. 1971. Sedimentary structures in the Lower Greensand of the Weald, England, and Bas-Boulonnais, France. Sediment. Geol. 6, 73109.CrossRefGoogle Scholar
Nio, S.-D. 1976. Marine transgressions as a factor in the formation of marine sand wave complexes. Geologie Mijnb. 55, 1840.Google Scholar
Peters, J. J. 1971. La Dynamique de la Sédimentation de la Région divagante du Bief Maritime du Fleuve Congo. Laboratoire de Recherche Hydrauliques á Borgerhout (Belgium).Google Scholar
Robinson, A. H. W. 1961. The hydrography of Start Bay and its relationship to beach changes at Hallsands. Geogr. J. 127, 6377.CrossRefGoogle Scholar
Samu, G. 1968. Ergebnisse der Sandwanderungsuntersuchungen in der südlichen Nordsee. MittBl. Bundesanst. WassBau 26, 1361.Google Scholar
Simons, D. B., Richardson, E. V. & Nordin, C. F. 1965. Bedload equation for ripples and dunes. Prof. Pap. U.S. geol. Surv. 462-H.Google Scholar
Sternberg, R. W. & Marsden, M. A. H. 1979. Dynamics, sediment transport, and morphology in a tide-dominated embayment. Earth Surface Processes 4, 117–39.CrossRefGoogle Scholar
Stride, A. H. 1963. Current-swept sea floors near the southern half of Great Britain. Q. Jl geol. Soc. Lond. 119, 175–97.CrossRefGoogle Scholar
Stride, A. H. 1973. Sediment transport by the North Sea. In North Sea Science (ed. Goldberg, E. D.), pp. 101–30. Cambridge (Mass.): MIT Press.Google Scholar
Suthons, C. T. 1963. Frequency of occurrence of abnormally high sea levels on the east and south coasts of England. Proc. Inst. civ. Engrs 25, 433–50.Google Scholar
Terwindt, J. H. J. 1971. Sand waves in the Southern Bight of the North Sea. Marine Geology 10, 5167.CrossRefGoogle Scholar
Ulrich, J. & Passenau, H. 1973. Morphologische Untersuchungen zum Probleme der tidebedingten Sandbewegung im Lister Tief. Die Küste 22, 95112.Google Scholar
Volpel, A. & Samu, G. 1966. Reliefanderungen in der Tideströmrinne des Wangerooger Fahrwassers im Verlauf einer Sturmperiode und in der darauf folgenden Periode mit ruhigen Wetterlagen. MittBl. Bundesanst. WassBau 24, 120.Google Scholar