Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T17:21:01.489Z Has data issue: false hasContentIssue false

Some conventional potassium–argon and 40Ar/39Ar age studies of glauconite

Published online by Cambridge University Press:  01 May 2009

N. R. Brereton
Affiliation:
Department of Geodesy and Geophysics, University of Cambridge, Cambridge CB3 0EZ
P. J. Hooker
Affiliation:
Department of Geodesy and Geophysics, University of Cambridge, Cambridge CB3 0EZ
J. A. Miller
Affiliation:
Department of Geodesy and Geophysics, University of Cambridge, Cambridge CB3 0EZ

Summary

40Ar/39Ar age studies of some glauconites from well-known stratigraphical horizons reveal unexpectedly high ages compared with the conventional K–Ar age determinations. These have been interpreted in terms of nuclear and physico-chemical reactions sustained by the glauconites in the reactor. These impose severe limitations on the use of glauconite in the 40Ar/39Ar irradiation technique.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bentor, Y. K. & Kastner, M. 1965. Notes on the mineralogy and origin of glauconite. J. sedim. Petrol. 35, 155–66.Google Scholar
Brereton, N. R. 1970. Corrections for interfering isotopes in the 40Ar/39Ar dating method. Earth Planet. Sci. Lett. 8, 427–33.CrossRefGoogle Scholar
Brewer, A. K. 1936. The abundance ratio of the isotopes of potassium in mineral and plant sources. J. Am. Chem. Soc. 58, 365–70.CrossRefGoogle Scholar
Burst, J. F. 1958(a). Mineral heterogeneity in ‘glauconite’ pellets. Am. Miner. 43, 481–97.Google Scholar
Burst, J. F. 1958(b). ‘Glauconite’ pellets: their mineral nature and applications to stratigraphic interpretations. Bull. Am. Ass. Petrol. Geol. 42, 310–27.Google Scholar
Dalrymple, G. B. & Lanphere, M. A. 1970. Potassium–argon Dating. Freeman, London. 258 pp.Google Scholar
Evernden, J. F., Curtis, G. H., Kistler, R. W. & Obradovich, J. 1960. Argon diffusion in glauconite, microcline, sanidine, leucite and phlogopite. Am. J. Sci. 258, 583604.CrossRefGoogle Scholar
Evernden, J. F., Curtis, G. H., Obradovich, J. & Kistler, R. 1961. On the evaluation of glauconite and illite for dating sedimentary rocks by the Potassium–argon method. Geochim. cosmochim. Acta 23, 7899.CrossRefGoogle Scholar
Fitch, F. J., Forster, S. C. & Miller, J. A. 1974. Geological time scale. Rep. Prog. Phys. 37, 1433–96.CrossRefGoogle Scholar
Fitch, F. J., Miller, J. A. & Hooker, P. J. 1976. Single whole rock K-Ar isochrons. Geol. Mag. 1, 110.CrossRefGoogle Scholar
Harland, W. B., Smith, A. G. & Wilcock, B. (Eds) 1964. The Phanerozoic Time-scale. Q. Jl geol. Soc. Lond. 120 s.Google Scholar
Hower, J. 1961. Some factors concerning the nature and origin of glauconite. Am. Miner. 46, 313–34.Google Scholar
Hower, J., Hurley, P. M. & Pinson, W. H. 1963. The dependence of K-Ar age on the mineralogy of various particle size ranges in a shale. Geochim. cosmochim. Acta 27, 405–11.CrossRefGoogle Scholar
Hurley, P. M. 1961. Glauconite as a possible means of measuring the age of sediments. Ann. N. Y. Acad. Sci. 91, 294–7.CrossRefGoogle Scholar
Hurley, P. M. 1966. K-Ar dating of sediments. In Schaeffer, O. A. & Zähringer, (Eds). Potassium–argon Dating, pp. 134–51. Springer, Berlin.CrossRefGoogle Scholar
Hurley, P. M., Cormier, R. F., Hower, J., Fairbairn, H. W. & Pinson, W. H. 1960. Reliability of glauconite for age measurement by K-Ar and Rb-Sr methods. Bull. Am. Assoc. Pet. Geol. 44, 1793–808.Google Scholar
Kendall, B. R. F. 1960. Isotopic composition of potassium. Nature, Lond. 186, 225–6.CrossRefGoogle Scholar
McRae, S. G. 1972. Glauconite. Earth-Sci. Rev. 8, 397440.CrossRefGoogle Scholar
McRae, S. G. & Lambert, J. L. M. 1968. A study of some glauconites from Cretaceous and Tertiary formations in south-east England. Clay Miner. 7, 431–40.CrossRefGoogle Scholar
Nier, A. O. 1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys. Rev. 77, 789–93.CrossRefGoogle Scholar
Polevaya, N. I. 1961. The absolute geochronological time-scale based on glauconites. Trudy Lab. Geol. Dokembr. no. 12, 123–32 (in Russian).Google Scholar
Sabatier, M. 1949. Recherches sur la glauconie. Bull. Soc. Fr. Minéral. Cristallogr. 72, 474542.Google Scholar
Schreiner, G. D. L. & Welke, H.-J. H. F. D. 1971. Variations in 39K/41K ratio and movement of potassium in heated and stressed xenoliths. Geochim. cosmochim. Acta 35, 719.CrossRefGoogle Scholar
Thompson, G. R. & Hower, J. 1973. An explanation for low radiometric ages from glauconite. Geochim. cosmochim. Acta 37, 1473–91.CrossRefGoogle Scholar
Thorslund, P. 1937. Notes on the Lower Ordovician of Falbygden. Bull. Geol. Inst. Univ. Upsala 27, 145–65.Google Scholar
Tjernvik, T. E. 1956. On the early Ordovician of Sweden stratigraphy and fauna. Bull. Geol. Inst. Univ. Upsala 36, 107.Google Scholar
Verbeek, A. A. & Schreiner, G. D. L. 1967. Variations in 39K/41K ratio and movement of potassium in a granite-amphibolite contact region. Geochim. cosmochim. Acta 31, 2125–33.CrossRefGoogle Scholar
Yanase, Y. & Wampler, J. M. 1975. Recoil-induced loss of AR39 from glauconite and other clay minerals. Trans. Amer. Geophys. Union 56, 472.Google Scholar
York, D. 1966. Least-squares fitting of a straight line. Can. J. Phys. 44, 1079.CrossRefGoogle Scholar