Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-19T06:31:43.603Z Has data issue: false hasContentIssue false

Carbon isotope and magnetic polarity evidence for non-depositional events within the Cambrian-Ordovician Boundary section near Dayangcha, Jilin Province, China

Published online by Cambridge University Press:  01 May 2009

R. L. Ripperdan
Affiliation:
Department of Environmental Science and Energy Research, Weizmann Institute of Science, Rehovot 76-100, Israel
M. Magaritz
Affiliation:
Department of Environmental Science and Energy Research, Weizmann Institute of Science, Rehovot 76-100, Israel
J. L. Kirschvink
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.

Abstract

Carbon isotope and magnetic polarity stratigraphic results from the Cambrian-Ordovician Boundary section at Xiaoyangqiao, near Dayangcha, Jilin Province, China, in comparison to a contemporaneous section at Black Mountain, Australia, indicate strata equivalent to major portions of the Australian sequence are either absent or are restricted to highly condensed intervals. These intervals are correlative with regressive sea level events identified in Australia and western North America, suggesting regional or eustatic sea level changes strongly influenced deposition of the Xiaoyangqiao sequence. These results also suggest the Xiaoyangqiao section is unfavourable as the site of the Cambrian-Ordovician Boundary Global Stratotype Section and Point.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banner, J. L. & Hanson, G. N. 1990. Calculations of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis Geochimica et Cosmochimica Acta 54, 3123–37.CrossRefGoogle Scholar
Burrett, C. & Stait, B. 1986. China and southeast Asia as part of the Tethyan margin of Cambro-Ordovician Gondwanaland. ln Shallow Tethys 2 (ed. McKenzie, K. G.), pp. 6577. International Symposium on Shallow Tethys 2, Wagga Wagga.Google Scholar
Burrett, C., Long, J., & Stait, B. 1990. Early-Middle Paleozoic biogeography of Asian terranes derived from Gondwana. ln Palaeozoic Palaeogeography and Bio-geography (eds McKerrow, W. S. and Scotese, C. R.), pp. 163174. Geological Society Memoirs 12, Bath.Google Scholar
Chen, J.-Y., Erdtmann, B.-D., Gong, W.-L., li, H.-M., Lin, Y.-K., Qian, Y.-Y., Tao, W.-C., Wang, Y.-X., Wang, Z.-Z., Yang, J.-D., Yin, L.-M. & Zhang, J.-M. 1986. Aspects of Cambrian-Ordovician Boundary in Dayangcha, China. Beijing: China Prospect Publishing House.Google Scholar
Chen, J.-Y., Qian, Y.-Y., Zhang, J.-M., Lin, Y.-K., Yin, L.-M., Wang, Z.-H., Wang, Z.-Z., Yang, J.-D. & Wang, Y.-X. 1988. The recommended Cambrian-Ordovician boundary stratotype of the Xiaoyangqiao section (Dayangcha, Jilin Province), China Geological Magazine 125, 415–44.Google Scholar
Coplen, T. B., Kendall, C., & Hopple, J. 1983. Comparison of stable isotope reference samples Nature 302, 236–8.CrossRefGoogle Scholar
Druce, E. C., Shergold, J. H. & Radke, B. M. 1982. A reassessment of the Cambrian-Ordovician boundary section at Black Mountain, western Queensland, Australia. In The Cambrian-Ordovician Boundary: Sections, Fossils Distributions, and Correlations (eds Bassett, M. G. and Dean, W. T.), pp. 193209. National Museum of Wales, Geological Series 3, Cardiff.Google Scholar
Epstein, A. G., Epstein, J. B. & Harris, L. D. 1977. Conodont color alteration-an index of organic metamorphism. U.S. Geological Survey Professional Paper no. 995, 27 pp.CrossRefGoogle Scholar
Erdtmann, B.-D. 1986. Early Ordovician eustatic cycles and their bearing on punctuations in early nematophorid (planktic) graptolite evolution Lecture Notes in Earth Sciences 8, 139–52.CrossRefGoogle Scholar
Füchtbauer, H. & Goldschmidt, H. 1965. Beziehungen zwischen Calciumgehalt und Bildungsbedingungen der Dolomite Geologische Rundschau 55, 2940.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G. 1990. A Geologic Time Scale. Cambridge: Cambridge University Press.Google Scholar
Harrison, C. G. A. & Somayajulu, B. L. K. 1966. Behaviour of the Earth's magnetic field during a reversal Nature 212, 1193–5.CrossRefGoogle Scholar
Holland, H. D. 1978. The Chemistry of the Atmosphere and Oceans. New York: John Wiley & Sons.Google Scholar
Kirschvink, J. L. 1992. A paleogeographic model for Vendian and Cambrian time. In The Proterozoic Biosphere: A Multidisciplinary study (eds Schopf, J. W., Klein, C. and des Maris, D.), pp. 567–81. Cambridge University Press.CrossRefGoogle Scholar
Kump, L. R. & Garrels, R. M. 1986. Modeling atmospheric O2 in the global sedimentary redox cycle American Journal of Science 286, 337–60.CrossRefGoogle Scholar
Magaritz, M. 1983. Carbon and oxygen isotope composition of recent and ancient coated grains. In Coated Grains (ed. Peryt, T. M.), pp. 2737. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Magaritz, M. 1989. 13C minima follow extinction events: A clue to faunal radiation Geology 17, 337–40.2.3.CO;2>CrossRefGoogle Scholar
Margolis, S. V., Mount, J. F., Doehne, E., Showers, W. & Ward, P. 1987. The Cretaceous/Tertiary boundary carbon and oxygen isotope stratigraphy, diagenesis, and paleoceanography at Zumaya, Spain Paleoceanography 2, 361–77.CrossRefGoogle Scholar
McCrea, J. M. 1950. On the isotopic chemistry of carbonate and a paleo-temperature scale Journal of Chemical Physics 18, 849–57.CrossRefGoogle Scholar
Miller, J. F. 1984. Cambrian and earliest Ordovician conodont evolution, biofacies, and provincialism. In Conodont Biofacies and Provincialism (ed. Clark, D. L.), pp. 4368. Geological Society of America Special Paper no 196.CrossRefGoogle Scholar
Miller, J. F. 1988. Conodonts as biostratigraphic tools for redefinition and correlation of the Cambrian-Ordovician boundary Geological Magazine 125, 349–62.CrossRefGoogle Scholar
Miller, J. F. 1992. The Lange Ranch Eustatic Event: A regressive-transgressive couplet near the base of the Ordovician System. In Global Perspectives on Ordovician Geology (eds Webby, B. and Laurie, J. R.), pp. 395407. Rotterdam: Balkema.Google Scholar
Nicoll, R. S. 1990. The genus Cordylodus and a latest Cambrian-earliest Ordovician conodont biostratigraphy Bureau of Mineral Resources Journal of Australian Geology and Geophysics 11, 529–58.Google Scholar
Nicoll, R. S. 1991. Differentiation of Late Cambrian-Early Ordovician species of Cordylodus (Conodonta) with biapical basal cavities Bureau of Mineral Resources Journal of Australian Geology and Geophysics 12, 223–44.Google Scholar
Nicoll, R. S. 1992. Evolution of the conodont genus Cordylodus and the Cambrian-Ordovician boundary. In Global Perspectives on Ordovician Geology (eds Webby, B. and Laurie, J. R.), pp. 93103. Rotterdam: Balkema.Google Scholar
Nicoll, R. S. & Shergold, J. H. 1991. Revised Late Cambrian (pre-Payntonian-Datsonian) conodont biostratigraphy at Black Mountain, Georgina Basin, western Queensland, Australia Bureau of Mineral Resources Journal of Australian Geology and Geophysics 12, 93118.Google Scholar
Nicoll, R. S., Laurie, J. R., Shergold, J. H. & Nielson, A. T. 1992. Preliminary correlation of latest Cambrian to Early Ordovician sea level events in Australia and Scandinavia. In Global Perspectives on Ordovician Geology (eds Webby, B. and Laurie, J. R.), pp. 381–94. Rotterdam: Balkema.Google Scholar
Opdyke, N. D., Kent, D. V. & Lowrie, W. 1973. Details of magnetic polarity transitions recorded in a high deposition rate deep-sea core Earth and Planetary Science Letters 20, 315–24.CrossRefGoogle Scholar
Ripperdan, R. L. & Kirschvink, J. L. 1992. Paleomagnetic results from the Cambrian-Ordovician boundary section at Black Mountain, Georgina Basin, western Queensland, Australia. In Global Perspectives on Ordovician Geology (eds Webby, B. and Laurie, J. R.), pp. 93103. Rotterdam, Balkema.Google Scholar
Ripperdan, R. L., Magaritz, M., Nicoll, R. S. & Shergold, J. H. 1992. Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia Geology 20, 1039–42.2.3.CO;2>CrossRefGoogle Scholar
Scotese, C. R. 1987. Plate tectonic development of the Circum-Pacific (Panthallasic Ocean) during the Early Paleozic. In Circum-Pacific Orogenic Belts and the Evolution of the Pacific Ocean Basin (eds Monger, J. W. and Francheteau, J.), pp. 4957. American Geophysical Union Geodynamics Series no 18.CrossRefGoogle Scholar
Shergold, J. H. & Nicoll, R. S. 1992. Revised Cambrian-Ordovician boundary biostratigraphy, Black Mountain, western Queensland. In Global Perspectives on Ordovician Geology (eds Webby, B. and Laurie, J. R.), pp. 8192. Rotterdam: Balkema.Google Scholar
Wadleigh, M. A. & Veizer, J. 1992. 18O/16O and 13C/12C in lower Paleozoic articulate brachiopods: Implications for the isotopic composition of seawater Geochimica et Cosmochimica Acta 56, 431–43.CrossRefGoogle Scholar
Zachos, J. C. & Arthur, M. A. 1986. Paleoceanography of the Cretaceous/Tertiary boundary event; inferences from stable isotopic and other data Paleoceanography 1, 526.CrossRefGoogle Scholar