Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-21T07:46:38.854Z Has data issue: false hasContentIssue false

Chromite chemistry as an indicator of petrogenesis and tectonic setting of the Ranomena ultramafic complex in north-eastern Madagascar

Published online by Cambridge University Press:  28 November 2016

C. ISHWAR-KUMAR
Affiliation:
Centre for Earth Sciences, Indian Institute of Science, Bangalore 560012, India
V.J. RAJESH
Affiliation:
Department of Earth and Space Sciences, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, India
B.F. WINDLEY
Affiliation:
Department of Geology, The University of Leicester, Leicester LE1 7RH, UK
T. RAZAKAMANANA
Affiliation:
Départment de Sciences Naturelles, Université de Toliara, BP.185, Toliara 601, Madagascar
T. ITAYA
Affiliation:
Japan Geochronology Network (NPO), 2–5 Nakahima, Naka Ward, Okayama 703–8252, Japan
E.V.S.S.K. BABU
Affiliation:
CSIR - National Geophysical Research Institute, Hyderabad 500007, India
K. SAJEEV*
Affiliation:
Centre for Earth Sciences, Indian Institute of Science, Bangalore 560012, India
*
#Author for correspondence: sajeev@ceas.iisc.ernet.in

Abstract

The Ranomena ultramafic complex in NE Madagascar consists of layered gabbro, harzburgite, orthopyroxenite, clinopyroxenite, garnet websterite and chromitite-layered peridotite. This study of the Ranomena chromite chemistry aims to better understand the petrogenesis and palaeotectonic environment of the complex. The chromite from the Ranomena chromitite is unzoned/weakly zoned and has a Cr# (Cr/(Cr + Al)) of 0.59–0.69, a Mg# (Mg/(Fe + Mg)) of 0.37–0.44, and low Al2O3 (15–23 wt %) suggesting derivation from a supra-subduction zone arc setting. Calculation of parental melt composition suggests that the parental magma composition of the Ranomena chromitite was similar to that of a primitive tholeiitic basalt formed at a high degree of mantle melting, suggesting the parental melt composition was equivalent to that of an island-arc tholeiite (IAT). The parental magma of the Ranomena chromite had a FeO/MgO ratio of 0.9 to 1.8, suggesting arc derivation. The parental magma was Al- and Fe-rich, similar to a tholeiitic basaltic magma. The composition of orthopyroxene from the chromitite indicates a crystallization temperature range of 1250–1300°C at 1.0 GPa. The chemistry of the chromite in the Ranomena chromitite further suggests that the complex formed in a supra-subduction zone arc tectonic setting.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, A. H., Arai, S. & Attia, A. K. 2001. Petrological characteristics of podiform chromitites and associated peridotites of the Pan-African ophiolite complexes of Egypt. Mineralium Deposita 36, 7284.CrossRefGoogle Scholar
Ahmed, A. H., Arai, S., Yaser, M. A., Ikenne, M. & Rahimi, A. 2009. Platinum-group elements distribution and spinel composition in podiform chromitites and associated rocks from the upper mantle section of the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. Journal of African Earth Sciences 55, 92104.Google Scholar
Ahmed, A. H., Arai, S., Yaser, M. A. & Rahimi, A. 2005. Spinel composition as a petrogenetic indicator of the mantle section in the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. Precambrian Research 138, 225–34.Google Scholar
Arai, S. 1980. Dunite-harzburgite-chromitite complexes as refractory residue in the Sangun-Yamaguchi zone, western Japan. Journal of Petrology 21, 141–65.CrossRefGoogle Scholar
Arai, S. 1992. Chemistry of Cr-spinel in volcanic rocks a potential guide to magma chemistry. Mineralogical Magazine 56, 173–84.Google Scholar
Arai, S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology 113, 191204.CrossRefGoogle Scholar
Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, S. & Ishimaru, S. 2011. Chemical characteristics of Cr-spinel in plutonic rocks: implications for deep magma processes and discrimination of tectonic setting. Island Arc 20, 125–37.Google Scholar
Aswad, K. J. A., Aziz, N. R. H. & Koyi, H. A. 2011. Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine 148, 802–18.Google Scholar
Barnes, S. J. 2000. Cr-spinel in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology 41, 387409.Google Scholar
Barnes, S. J. & Hill, R. E. T. 1995. Poikilitic Cr-spinel in komatiitic cumulates. Geochimica Cosmochimica Acta 39, 937–45.Google Scholar
Barnes, S. J. & Roeder, P. L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology 42, 2279–302.Google Scholar
Basu, A. R. & McGregor, I. O. 1975. Chromite spinels from ultramafic xenoliths. Geochimica Cosmochimica Acta 39, 937–45.Google Scholar
Bauer, W. & Key, R. 2005. Carte Géologique Préliminaire de Madagascar. 1:500000. Toamasina No 6. British Geological Survey, Keyworth, UK.Google Scholar
Besairie, H. 1967. The precambrian of madagascar. In The Precambrian, volume 3 (ed Rankama, K.), pp. 133–42. Wiley, Chichester.Google Scholar
Besairie, H. 1970. Descriptions Géologiques du Massif Ancien de Madagascar. Déuxieme Volume: La Région Côtière Orientale entre le Mangoro et Vangaindrano. Tananarive: Documentation du Bureau Géologique de Madagascar, 67 pp.Google Scholar
Burkhard, D. J. M. 1993. Accessory Cr-spinels: their coexistence and alteration in serpentinites. Geochimica Cosmochimica Acta 55, 1297–306.Google Scholar
Cameron, E. N. 1975. Post-cumulus and subsolidus equilibration of Cr-spinel and coexisting silicates in the Eastern Bushveld Complex. Geochimica Cosmochimica Acta 39, 1021–33.Google Scholar
Collins, A. S., Fitzsimons, I. C. W., Hulscher, B. & Razakamanana, T. 2003. Structure of the eastern margin of the East African Orogen in central Madagascar. Precambrian Research 123, 111–33.CrossRefGoogle Scholar
Collins, A. S. & Windley, B. F. 2002. The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana. Journal of Geology 110, 325–40.Google Scholar
Dharma Rao, C. V., Santosh, M., Sajeev, K. & Windley, B. F. 2013. Cr-spinel-silicate chemistry of the Neoarchean Sittampundi Complex, southern India: implications for subduction-related arc magmatism. Precambrian Research 227, 259–75.Google Scholar
Dick, H. J. B. & Bullen, T. 1984. Cr-spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 5476.Google Scholar
Eales, H. V., Wilson, A. H. & Reynolds, I. M. 1988. Complex unmixed spinels in layered intrusions within an obducted ophiolite in the Natal-Namaqua mobile belt. Mineralium Deposita 23, 150–7.Google Scholar
Evans, B. W. & Frost, B. R. 1975. Chrome-spinel in progressive metamorphism: a preliminary analysis. Geochimica Cosmochimica Acta 39, 959–72.Google Scholar
Franz, L. & Wirth, R. 2000. Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of oceanic lithosphere. Contributions to Mineralogy and Petrology 140, 283–95.Google Scholar
González-Jiménez, J. M., Griffin, W. L., Gervilla, F., Proenza, J. A., O'Reilly, S. Y., Akbulut, M., Pearson, N. J. & Arai, S. 2014a. Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos 189, 140–58.Google Scholar
González-Jiménez, J. M., Griffin, W. L., Gervilla, F., Proenza, J. A., O'Reilly, S. Y. & Pearson, N. J. 2014b. Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos 189, 127–39.Google Scholar
González-Jiménez, J. M., Locmelis, M., Belousova, E., Griffin, W. L., Gervilla, F., Kerestedjian, T. N., O'Reilly, S. Y., Pearson, N. J. & Sergeeva, I. 2015. Genesis and Tectonic implications of podiform chromitites in the metamorphic ultramafic massif of Dobromirsti (Bulgaria). Gondwana Research 27, 555–74.Google Scholar
Green, D. H. & Ringwood, A. E. 1970. Mineralogy of peridotite compositions under mantle conditions. Physics of Earth and Planetary Interiors 8, 359–71.Google Scholar
Grieco, G., Merlini, A. & Cazzaniga, A. 2012. The tectonic significance of PGM-bearing chromitites at the Ranomena mine, Toamasina Cr-spinel district, Madagascar. Ore Geology Reviews 44, 7081.Google Scholar
Grieco, G., Merlini, A., Pedrottia, M., Moronia, M. & Randrianja, R. 2014. The origin of Madagascar chromitites. Ore Geology Reviews 58, 5567.Google Scholar
Hamlyn, P. R. & Keays, R. R. 1979. Origin of Cr-spinel compositional variation in the Panton Sill, Western Australia. Contributions to Mineralogy and Petrology 69, 7582.Google Scholar
Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hoffmann, A. W. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677–81.Google Scholar
Hellebrand, E., Snow, J. E., Hoppe, P. & Hofmann, A. W. 2002. Garnet-field melting and late-stage refertilization in ‘Residual’ abyssal peridotites from the Central Indian Ridge. Journal of Petrology 43, 2305–38.Google Scholar
Hottin, G. 1969. Les terrains cristallins du centre-nord et du nord-est de Madagascar. Document du Bureau Géologique de Madagascar 178 (2 volumes), 1192; 193–381.Google Scholar
Irvine, T. N. 1965. Cr-spinel as a petrogenetic indicator: Part 1. Theory. Canadian Journal of Earth Sciences 2, 648–72.Google Scholar
Irvine, T. N. 1967. Cr-spinel as a petrogenetic indicator, Part II. Petrological applications. Canadian Journal of Earth Sciences 4, 71103.CrossRefGoogle Scholar
Irvine, T. N. 1977. Origin of Cr-spinel layers in the Muskoka intrusion and other intrusions: a new interpretation. Geology 5, 273–7.Google Scholar
Ishwar-Kumar, C., Rajesh, V. J., Windley, B. F., Razakamanana, T., Itaya, T., Babu, E. V. S. S. K., Sajeev, K. 2016a. Petrogenesis and tectonic setting of the Bondla mafic-ultramafic complex, western India: Inferences from chromian spinel chemistry. Journal of Asian Earth Sciences, published online 5 July 2016, doi: 10.1016/j.jseaes.2016.07.004.CrossRefGoogle Scholar
Ishwar-Kumar, C., Sajeev, K., Windley, B. F., Kusky, T. M., Feng, P., Ratheesh-Kumar, R. T., Huang, Y., Zhang, Y., Jiang, X., Razakamanana, T., Yagi, K. & Itaya, T. 2015. Evolution of high-pressure mafic granulites and pelitic gneisses from NE Madagascar: Tectonic implications. Tectonophysics 662, 219–42.Google Scholar
Ishwar-Kumar, C., Santosh, M., Wilde, S. A., Tsunogae, T., Itaya, T., Windley, B. F. & Sajeev, K. 2016b. Mesoproterozoic suturing of Archean crustal blocks in western peninsular India: Implications for India-Madagascar correlations. Lithos 263, 143–60, doi: 10.1016/j.lithos.2016.01.016.Google Scholar
Ishwar-Kumar, C., Windley, B. F., Horie, K., Kato, T., Hokada, T., Itaya, T., Yagi, K., Gouzu, C. & Sajeev, K. 2013. A Rodinian suture in western India: New insights on India-Madagascar correlations. Precambrian Research 236, 227–51.Google Scholar
Jan, M. Q. & Windley, B. F. 1990. Cr-spinel-silicate chemistry in ultramafic rocks of the Jijal Complex, northwest Pakistan. Journal of Petrology 31, 6771.Google Scholar
Jaques, A. L. & Green, D. H. 1980. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology 73, 287310.Google Scholar
Kamenetsky, V., Crawford, A. J. & Meffre, S. 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42, 655–71.CrossRefGoogle Scholar
Karipi, S., Tsikouras, B., Hatzipanagiotou, K. & Grammatikopoulos, T. A. 2007. Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromon ophiolites (Central Greece). Lithos 99, 136–49.Google Scholar
Key, R. M., Pitfield, P. E. J., et al. 2011. Polyphase Neoproterozoic orogenesis within the East Africa-Antarctica orogenic belt in central and northern Madagascar. In The Formation and Evolution of Africa: A Synopsis of 3.8 Ga of Earth History (eds van Hinsbergen, D. J. J., Buiter, S. J. H., Torsvik, T. H., Gaina, C. & Webb, S. J.), pp. 4968. Geological Society of London, Special Publication no. 357.Google Scholar
Kröner, A., Hegner, E., Collins, A. S., Windley, B. F., Brewer, T. S., Razakamanana, T. & Pidgeon, R. T. 2000. Age and magmatic history of the Antananarivo block, Central Madagascar, as derived from zircon geochronology and Nd isotopic systematics. American Journal of Science 300, 251–88.Google Scholar
Kröner, A., Windley, B. F., Jaeckel, P., Brewer, T. S. & Razakamanana, T. 1999. New zircon ages and regional significance for the evolution of the Pan-African orogen in Madagascar. Journal of the Geological Society of London 156, 1125–35.Google Scholar
Lindsley, D. H. 1983. Pyroxene thermometry. American Mineralogist 68, 477–93.Google Scholar
Maurel, C. & Maurel, P. 1982. Étude experimental de la distribution de l'aluminium entre bain silicate basique et spinel chromifère. Implications pétrogenetiques: tenore en chrome des spinelles. Bulletin de Minéralogie 105, 197202.Google Scholar
Michael, P. J. & Bonatti, E. 1985. Petrology of ultramafic rocks from Sites 556, 558, and 560 in the North Atlantic. In Initial Reports Deep Sea Drilling Project, volume 82 (eds Bougault, H., Cand, S. C. et al.), pp. 523–8. Washington.Google Scholar
Mukherjee, R., Mondal, S. K., Rosing, M. T. & Frei, R. 2010. Compositional variations in the Mesoarchean Cr-spinels of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting. Contributions to Mineralogy and Petrology 160, 865–85.Google Scholar
Oh, C. W., Seo, J., Choi, S. G., Rajesh, V. J. & Lee, J. H. 2012. U-Pb SHRIMP zircon geochronology, petrogenesis, and tectonic setting of the Neoproterozoic Baekdong ultramafic rocks in the Hongseong Collision belt, South Korea. Lithos 128–131, 100–12.Google Scholar
Ohara, Y. & Ishi, T. 1998. Peridotites from the southern Mariana fore-arc: heterogeneous fluid supply in mantle wedge. Island Arc 7, 541–58.Google Scholar
Raharimahefa, T. & Kusky, T. M. 2009. Structural and remote sensing analysis of the Betsimisaraka Suture in northeastern Madagascar. Gondwana Research 15, 1427.Google Scholar
Ratheesh-Kumar, R. T., Ishwar-Kumar, C., Windley, B. F., Razakamanana, T., Nair, R. R. & Sajeev, K. 2015. India-Madagascar paleo-fit based on flextural isostasy of their rifted margins. Gondwana Research 27, 581600.Google Scholar
Rehfeldt, T., Dorrit, E. J., Carlson, R. W. & Foley, S. F. 2007. Fe-rich dunite xenoliths from South African kimberlites: cumulates from Karoo flood basalts. Journal of Petrology 48, 1387–409.Google Scholar
Rekha, S., Bhattacharya, A. & Prabhakar, N. 2014. Tectonic restoration of the Precambrian crystalline rocks along the west coast of India: correlation with eastern Madagascar in East Gondwana. Precambrian Research 252, 191208.Google Scholar
Rekha, S., Viswanath, T. A., Bhattacharya, A. & Prabhakar, N. 2013. Meso/Neoarchean crustal domains along the north Konkan coast, western India: The Western Dharwar Craton and the Antongil-Masora Block (NE Madagascar) connection. Precambrian Research 233, 316–36.Google Scholar
Roeder, P. L. 1994. Chromite: from the fiery rain of chondrules to the Kilauea Iki lava lake. Canadian Mineralogist 32, 729–46.Google Scholar
Roeder, P. L., Campbell, I. H. & Jamieson, H. E. 1979. A re-evaluation of the olivine-spinel geothermometer. Contributions to Mineralogy and Petrology 68, 325–34.Google Scholar
Roeder, P. L. & Reynolds, I. 1991. Crystallization of Cr-spinel and chromium stability in basaltic melts. Journal of Petrology 32, 909–34.Google Scholar
Rollinson, H. 1995. The relationship between Cr-spinel chemistry and the tectonic setting of Archaean ultramafic rocks. In Sub-Saharan Economic Geology (eds Blenkinshop, T. G. & Tromps, P.), pp. 723. Amsterdam: Balkema.Google Scholar
Rollinson, H. 2008. The geochemistry of mantle chromitite from the northern part of the Oman ophiolite: inferred parental melt compositions. Contributions to Mineralogy and Petrology 156, 273–88.Google Scholar
Rollinson, H., Appel, P. W. U. & Frie, R. 2002. A metamorphosed, early Archaean chromitite from West Greenland: implications for the genesis of Archaean anorthositic chromitites. Journal of Petrology 43, 2143–70.Google Scholar
Sack, R. O. & Ghiorso, M. S. 1991. Cr-spinels as petrogenetic indicators: thermodynamic and petrological applications. American Mineralogist 76, 827–47.Google Scholar
Schmidt, M. W. & Poli, S. 1998. Experimentally based water budget for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters 163, 361–79.Google Scholar
Schofield, D. I., Thomas, R. J. et al. 2010. Geological evolution of the Antongil craton, NE Madagascar. Precambrian Research 182, 187203.CrossRefGoogle Scholar
Scowen, P. A. H., Roeder, P. L. & Heltz, R. T. 1991. Re-equilibration of Cr-spinel within Kilauea Iki lava lake, Hawaii. Contributions to Mineralogy and Petrology 107, 820.Google Scholar
Suita, M. T. & Streider, A. J. 1996. Cr-spinels from Brazilian mafic-ultramafic complexes: metamorphic modifications. International Geology Review 38, 245–67.Google Scholar
Tamura, A. & Arai, S. 2006. Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90, 4356.Google Scholar
Thayer, T. P. 1970. Cr-spinel segregations as petrogenetic indicators. Geological Society of Africa Special Publications 1, 381–90.Google Scholar
Tsujimori, T., Esaka, N., Abimbola, A. F., Nishido, H., Ninagawa, K. & Itaya, T. 1998. Quantitative analysis of common rock-forming minerals by a modern wavelength-dispersive type EPMA: a preliminary report. Bulletin of the Research Institute of Natural Sciences, Okayama University of Science 23, 5160.Google Scholar
Tucker, R. D., Ashwal, L. D., Handke, M. J., Hamilton, M. A., Legrange, M. & Rambeloson, R. A. 1999. U-Pb geochronology and isotope geochemistry of the Archean and Proterozoic rocks of north-central Madagascar. Journal of Geology 107, 135–53.Google Scholar
Tucker, R. D., Roig, J. Y., Delor, C., Amerlin, Y., Goncalves, P., Rabarimanana, M. H., Ralison, A. V. & Belcvher, R. W. 2011. Neoproterozoic extension in the Greater Dharwar Craton: a reevaluation of the ‘Betsimisaraka suture’ in Madagascar. Canadian Journal of Earth Sciences 48, 389417.Google Scholar
Tucker, R. D., Roig, J. Y., Moine, B., Delor, C. & Peters, S. G. 2014. A geological synthesis of the Precambrian shield in Madagascar. Journal of African Earth Sciences 94, 930.Google Scholar
Wilson, M. 1989. Igneous Petrogenesis. London: Unwin Hyman, 446 pp.Google Scholar
Windley, B. F., Razafiniparany, A., Razakamanana, T. & Ackermand, D. 1994. Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: a review and reappraisal. Geologisch Rundschau 83, 642–59.Google Scholar
Zaccarini, F., Garuti, G., Proenza, J. A., Campos, L., Thalhammer, O. A. R., Aiglsperger, T. & Lewis, J. F. 2011. Cr-spinel and platinum group elements mineralization in the Santa Elena ultramafic nappe (Costa Rica): geodynamic implications. Geologica Acta 9, 117.Google Scholar
Zhou, M., Robinson, P. T., Malpas, J. & Li, Z. 1996. Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt/rock interaction and Cr-spinel segregation in the upper mantle. Journal of Petrology 37, 321.Google Scholar
Zhou, M., Robinson, P. T., Su, B., Gao, J., Li, J., Yang, J. & Malpas, J. 2014. Compositions of Cr-spinel, associated minerals, and parental magmas of podiform Cr-spinel deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research 26, 262–83.Google Scholar
Supplementary material: File

Ishwar-Kumar supplementary material

Table S1

Download Ishwar-Kumar supplementary material(File)
File 34.3 KB