Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T04:30:30.117Z Has data issue: false hasContentIssue false

Global, regional and local controls on the development of a Triassic carbonate ramp system, Western Balkanides, Bulgaria

Published online by Cambridge University Press:  20 October 2016

ATHANAS CHATALOV*
Affiliation:
Sofia University ‘St Kliment Ohridski’, 15 Tsar Osvoboditel Blvd, 1504 Sofia, Bulgaria
*
*Author for correspondence: chatalov@gea.uni-sofia.bg

Abstract

The Early to Late Triassic development of a carbonate ramp system in the subtropical belt of the NW Tethys was controlled by the interplay of several global and regional factors: geotectonic setting (slow continuous subsidence on a passive continental margin), antecedent topography (low-gradient relief inherited from preceding depositional regime), climate and oceanography (warm and dry climatic conditions, storm influence), relative sea-level changes (Olenekian to Anisian eustatic rise, middle Anisian to early Carnian sea-level fall), lack of frame-builders (favouring the maintenance of ramp morphology), and carbonate production (abundant formation of lime mud, non-skeletal grains and marine cements, development of diverse biota controlled by biological evolution and environmental conditions). Elevated palaeorelief affected the ramp initialization on a local scale, while autogenic processes largely controlled the formation of peritidal cyclicity during the early stage of ramp retrogradation. Probably fault-driven differential subsidence caused a local distal steepening of the ramp profile in middle–late Anisian time. The generally favourable conditions promoted long-term maintenance of homoclinal ramp morphology and accumulation of carbonate sediments having great maximum thickness (~500 m). Shutdown of the carbonate factory and demise of the ramp system in the early Carnian resulted from relative sea-level fall and subsequent emergence. After a period of subaerial exposure with minor karstification, the deposition of continental quartz arenites suggests the possible effect of the Carnian Pluvial Episode.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adnan, A., Shukla, U. K., Verma, A. & Shukla, T. 2015. Lithofacies of transgressive–regressive sequence on a carbonate ramp in Vindhyan basin (Proterozoic): a case of tidal-flat origin from central India. Arabian Journal of Geosciences 8, 69857001.Google Scholar
Aguirre, J. & Riding, R. 2005. Dasycladacean algal biodiversity compared with global variations in temperature and sea level over the past 350 Ma. Palaios 20, 581–8.Google Scholar
Ahr, W. M. 1973. The carbonate ramp: an alternative to the shelf model. Transactions of the Gulf Coast Association of Geological Societies 23, 221–5.Google Scholar
Aigner, T. 1985. Storm Depositional Systems: Dynamic Stratigraphy in Modern and Ancient Shallow Marine Sequences. Lecture Notes in the Earth Sciences 3. Berlin: Springer, 174 pp.Google Scholar
Aigner, T. & Bachmann, G. 1992. Sequence-stratigraphic framework of the German Triassic. Sedimentary Geology 80, 115–35.CrossRefGoogle Scholar
Ajdanlijski, G., Strasser, A. & Tronkov, D. 2004. Route VІІ;. Cyclicity in the Lower Triassic Series between Opletnya railway station and Sfrazhen hamlet. In Geological Routes in the Northern Part of Iskar Gorge. Guide of Field Geological Training (ed. Sinnyovsky, D.), pp. 90101. Sofia: Vanio Nedkov Publishing House.Google Scholar
Amodio, S., Ferreri, V. & D'Argenio, B. 2013. Cyclostratigraphic and chronostratigraphic correlations in the Barremian–Aptian shallow marine carbonates of the central-southern Appenines. Cretaceous Research 44, 132–56.CrossRefGoogle Scholar
Arche, A. & López-Gómez, J. 2014. The Carnian Pluvial Event in Western Europe: new data from Iberia and correlation with the Western Neotethys and Eastern North America–NW Africa regions. Earth-Science Reviews 128, 196231.CrossRefGoogle Scholar
Asseretto, R. & Chatalov, G. 1983. Mogila Formation (Lower–Middle Triassic) and lithostratigraphic markers in the Triassic system of Northwestern Bulgaria. Geologica Balcanica 13, 2936 (in Russian with English summary).Google Scholar
Aurell, M., Bádenas, B., Bosence, D. W. J. & Waltham, D. A. 1998. Carbonate production and offshore transport on a Late Jurassic carbonate ramp (Kimmeridgian, Iberian basin, NE Spain): evidence from outcrops and computer modeling. In Carbonate Ramps (eds Wright, V. P. & Burchette, T. P.), pp. 137–61. Geological Society of London, Special Publication no. 149.Google Scholar
Avigad, D., Sandler, A., Kolodner, K., Stern, R. J., McWilliams, M., Miller, N. & Beyth, M. 2005. Mass-production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: environmental implications. Earth and Planetary Science Letters 240, 818–26.Google Scholar
Bádenas, B., Aurell, M. & Bosence, D. 2010. Continuity and facies heterogeneities of shallow carbonate ramp cycles (Sinemurian, Lower Jurassic, North-east Spain). Sedimentology 57, 1021–48.Google Scholar
Bádenas, B., Aurell, M., Rodríguez-Tovar, F. J. & Pardo-Igúzquiza, E. 2003. Sequence stratigraphy and bedding rhythms of an outer ramp limestone succession (Late Kimmeridgian, Northeast Spain). Sedimentary Geology 161, 153–74.Google Scholar
Bakhtiar, H. A., Taheri, A. & Vaziri-Moghaddam, H. 2011. Maastrichtian facies succession and sea-level history of the Hossein-Abad, Neyriz area, Zagros Basin. Historical Biology 23, 145–53.Google Scholar
Bassi, D., Nebelsick, J. H., Puga-Bernabéu, Á. & Luciani, V. 2013. Middle Eocene Nummulites and their offshore redeposition: a case study from the Middle Eocene of the Venetian area, northeastern Italy. Sedimentary Geology 297, 115.Google Scholar
Bayet-Goll, A., Chen, J., Moussavi-Harami, R. & Mahboubi, A. 2015. Depositional processes of ribbon carbonates in Middle Cambrian of Iran (Deh-Sufiyan Formation, Central Alborz). Facies 61, 118.Google Scholar
Beavington-Penney, S. J., Wright, V. P. & Racey, A. 2005. Sediment production and dispersal on foraminifera-dominated early Tertiary ramps: the Eocene El Garia Formation, Tunisia. Sedimentology 52, 537–69.Google Scholar
Benatov, S. 2001. Brachiopod biostratigraphy of the Middle Triassic in Bulgaria and comparison with elsewhere in Europe. In Brachiopods Past and Present (eds Brunton, C. H. C., Cocks, L. R. M. & Long, S. L.), pp. 384–93. London: Taylor and Francis.Google Scholar
Benatov, S., Budurov, K., Trifonova, E. & Petrunova, L. 1999. Parallel biostratigraphy on micro- and megafauna and new data about the age of the Babino Formation (Middle Triassic) in the Iskur river gorge, Western Stara Planina Mountain. Geologica Balcanica 29, 31–8.Google Scholar
Bernecker, M. 2005. Late Triassic reefs from the Northwest and South Tethys: distribution, setting, and biotic composition. Facies 51, 442–53.Google Scholar
Berra, F. 2012. Sea-level fall, carbonate production, rainy days: how do they relate? Insight from Triassic carbonate platforms (Western Tethys, Southern Alps, Italy). Geology 40, 271–4.CrossRefGoogle Scholar
Bertok, C., Martire, L., Perotti, E., d'Atri, A. & Piana, F. 2011. Middle−Late Jurassic syndepositional tectonics recorded in the Ligurian Briançonnais succession (Marguareis–Mongioie area, Ligurian Alps, NW Italy). Swiss Journal of Geosciences 104, 237–55.CrossRefGoogle Scholar
Borkhataria, R., Aigner, T. & Pipping, K. 2006. An unusual, muddy, epeiric carbonate reservoir: the Lower Muschelkalk (Middle Triassic) of the Netherlands. American Association of Petroleum Geologists Bulletin 90, 6189.CrossRefGoogle Scholar
Bosence, D. 2005. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sedimentary Geology 175, 4972.Google Scholar
Bosence, D. et al. (12 co-authors). 2009. A dominant tectonic signal in high-frequency, peritidal carbonate cycles? A regional analysis of Liassic platforms from Western Tethys. Journal of Sedimentary Research 79, 389415.CrossRefGoogle Scholar
Boulila, S., Galbrun, B., Miller, K. G., Pekar, S. F., Browning, J. V., Laskar, J. & Wright, J. D. 2011. On the origin of Cenozoic and Mesozoic ‘third-order’ eustatic sequences. Earth-Science Reviews 109, 94112.Google Scholar
Bourquin, S., Bercovici, A., López-Gómez, J., Díez, J. B., Broutin, J., Ronchi, A., Durand, M., Arche, A., Linol, B. & Amour, F. 2011. The Permian–Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri-Tethyan domain scale: palaeogeographic maps and geodynamic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 299, 265–80.Google Scholar
Bover-Arnal, T., Moreno-Bedmar, J. A., Salas, R., Skelton, P. W., Bitzer, K. & Gili, E. 2010. Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin, E Spain): effects of accommodation and environmental change. Geologica Acta 8, 249–80.Google Scholar
Brandano, M. & Corda, L. 2002. Nutrients, sea level and tectonics: constraints for the facies architecture of a Miocene carbonate ramp in central Italy. Terra Nova 14, 257–62.Google Scholar
Brigaud, B., Vincent, B., Carpentier, C., Robin, C., Guillocheau, F., Yven, B. & Huret, E. 2014. Growth and demise of the Jurassic carbonate platform in the intracratonic Paris Basin (France): interplay of climate change, eustasy and tectonics. Marine and Petroleum Geology 53, 329.Google Scholar
Burchette, T. P. & Wright, V. P. 1992. Carbonate ramp depositional systems. Sedimentary Geology 79, 357.CrossRefGoogle Scholar
Burgess, P. 2006. The signal and the noise: forward modeling of allocyclic and autocyclic processes influencing peritidal carbonate stacking patterns. Journal of Sedimentary Research 76, 962–77.Google Scholar
Calvet, F. & Tucker, M. E. 1995. Mud-mounds with reefal caps in the upper Muschelkalk (Triassic), eastern Spain. In Carbonate Mud-mounds: Their Origin and Evolution (eds Monty, C. L. V. et al.), pp. 311–33. International Association of Sedimentologists, Special Publication no. 23.Google Scholar
Calvet, F., Tucker, M. E. & Helton, J. M. 1990. Middle Triassic carbonate ramp systems in the Сatalan Basin, northeast Spain: facies, system tracts, sequences and controls. In Carbonate Platforms: Facies, Sequences and Evolution (eds Tucker, M. E. et al.), pp. 79108. International Association of Sedimentologists, Special Publication no. 9.Google Scholar
Čatalov, G. 1988. Ladinian-Karnian terrigenous invasion and the bifurcation of the Triassic carbonate platform in Bulgaria. Comptes rendus de l'Académie bulgare des Sciences 41, 99102.Google Scholar
Chatalov, A. 2000 a. Marine phreatic cements in the Triassic limestones from the Western Balkanides. Geologica Balcanica 30, 3348.Google Scholar
Chatalov, A. 2000 b. The Mogila Formation (Spathian–Anisian) in the Western Balkanides of Bulgaria – ancient counterpart of an arid peritidal complex. In Epicontinental Triassic (eds Bachmann, G. H. & Lerche, I.), Zentralblatt für Geologie und Paläontologie Teil I, 9–10, 11231135.Google Scholar
Chatalov, A. 2002. Inner ramp carbonate shoals from the Middle Triassic in Northwestern Bulgaria. Review of the Bulgarian Geological Society 63, 320 (in Bulgarian with English summary).Google Scholar
Chatalov, A. 2005 a. Aragonitic-calcitic ooids from Lower to Middle Triassic peritidal sediments in the Western Balkanides, Bulgaria. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 237, 87110.Google Scholar
Chatalov, A. 2005 b. Monomineralic carbonate ooid types in the Triassic sediments from Northwestern Bulgaria. Geologica Balcanica 35, 6391.CrossRefGoogle Scholar
Chatalov, A. 2007. Physicochemical precipitation of fine-grained carbonate in seawater – an example of Triassic marine micrites from the Western Balkanides, Bulgaria. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 243, 149–67.Google Scholar
Chatalov, A. 2010. Depositional environment of the Middle Triassic carbonate rocks from the Granitovo strip, Northwestern Bulgaria. Review of the Bulgarian Geological Society 71, 83111 (in Bulgarian with English summary).Google Scholar
Chatalov, A. 2013. A Triassic homoclinal ramp from the Western Tethyan realm, Western Balkanides, Bulgaria: integrated insight with special emphasis on the Anisian outer to inner ramp facies transition. Palaeogeography, Palaeoclimatology, Palaeoecology 386, 3458.Google Scholar
Chatalov, A., Stefanov, Y. & Vetseva, M. 2015. The Röt-type facies of the Western Balkanides revisited: depositional environments and regional correlation. Abstracts 31st IAS Meeting of Sedimentology, 22–25 June, Krakow, p. 115. International Association of Sedimentologists.Google Scholar
Chatalov, A. & Vangelov, D. 2001. Storm-generated deposits in the Anisian (Pelsonian) limestones from the Western Balkanides. Review of the Bulgarian Geological Society 62, 1123.Google Scholar
Chemberski, H., Rankova, T., Antova, N. & Nikolov, G. 1996. The Triassic system in Bulgaria – composition, sedimentary environments and geodynamic events. Review of the Bulgarian Geological Society 57, 118 (in Bulgarian with English summary).Google Scholar
Chen, J., Chough, S. K., Chun, S. S. & Han, Z. 2009. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft-sediment deformation induced by storm-wave loading. Sedimentology 56, 1174–95.Google Scholar
Chen, J., Tong, J., Song, H., Luo, M., Huang, Y. & Xiang, Y. 2015. Recovery pattern of brachiopods after the Permian–Triassic crisis in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 433, 91105.Google Scholar
Chen, Z. Q. & Benton, M. J. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5, 375–83.Google Scholar
Chen, Z. Q., Kaiho, K. & George, A. G. 2005. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeography, Palaeoclimatology, Palaeoecology 224, 270–90.CrossRefGoogle Scholar
Chow, N., George, A. D., Trinajstic, K. M. & Chen, Z.-Q. 2013. Stratal architecture and platform evolution of an early Frasnian syn-tectonic carbonate platform, Canning Basin, Australia. Sedimentology 60, 1583–620.Google Scholar
Chow, N. & Wendte, J. 2011. Palaeosols and palaeokarst beneath subaerial unconformities in an Upper Devonian isolated reef complex (Judy Creek), Swan Hills Formation, west-central Alberta, Canada. Sedimentology 58, 960–93.Google Scholar
Cisne, J. L. 1986. Earthquakes recorded stratigraphically on carbonate platforms. Nature 323, 320–2.Google Scholar
Clari, P. A., Della Pierre, F. & Martire, L. 1995. Discontinuities in carbonate successions: identification, interpretation and classification of some Italian examples. Sedimentary Geology 100, 97121.Google Scholar
Cozzi, A., Grotzinger, J. P. & Allen, P. A. 2004. Evolution of a terminal Neoproterozoic carbonate ramp system (Buah Formation, Sultanate of Oman): effects of basement paleotopography. Geological Society of America Bulletin 116, 1367–84.Google Scholar
Crasquin, S. & Forel, M.-B. 2013. Ostracods (Crustacea) through the Permian–Triassic events. Earth-Science Reviews 137, 5264.Google Scholar
De Benedictis, D., Bosence, D. W. J. & Waltham, D. A. 2007. Tectonic control of peritidal carbonate parasequence formation: an investigation using forward tectono-stratigraphic modelling. Sedimentology 54, 587605.Google Scholar
Decarlis, A. & Lualdi, A. 2009. A sequence stratigraphic approach to a Middle Triassic shelf-slope complex of the Ligurian Alps (Ligurian Briançonnais, Monte Carmo-Rialto unit, Italy). Facies 55, 267–90.CrossRefGoogle Scholar
Delpomdor, F., Kant, F. & Préat, R. 2014. Neoproterozoic uppermost Haut-Shiloango Subgroup (West Congo Supergroup, Democratic Republic of Congo): misinterpreted stromatolites and implications for sea-level fluctuations before the onset of the Marinoan glaciation. Journal of African Earth Sciences 90, 4963.Google Scholar
Demicco, R. V., Lowenstein, T. K., Hardie, L. A. & Spencer, R. J. 2005. Model of seawater composition for the Phanerozoic. Geology 33, 877–80.Google Scholar
Deng, B., Wang, Y., Woods, A., Li, G. & Liao, W. 2015. Lower Triassic anachronistic facies capping the Qinghai-Tibet Plateau seamount: implications for the extension of extraordinary oceanic conditions deep into the interior Tethys Ocean. Global and Planetary Change 132, 31–8.Google Scholar
De Zanche, V., Gianolla, P., Mietto, P., Siorpaes, C. & Vail, P. R. 1993. Triassic sequence stratigraphy in the Dolomites (Italy). Memorie di Scienze Geologiche 45, 127.Google Scholar
Dibenedetto, S. & Grotzinger, J. 2005. Geomorphic evolution of a storm-dominated carbonate ramp (c. 549 Ma), Nama Group, Namibia. Geological Magazine 142, 583604.CrossRefGoogle Scholar
Dilliard, K. A., Pope, M. C., Coniglio, M., Hasiotis, S. T. & Lieberman, B. S. 2010. Active synsedimentary tectonism on a mixed carbonate–siliciclastic continental margin: third-order sequence stratigraphy of a ramp to basin transition, lower Sekwi Formation, Selwyn Basin, Northwest Territories, Canada. Sedimentology 57, 513–42.Google Scholar
Dineen, A. A., Fraiser, M. L. & Sheehan, P. M. 2014. Quantifying functional diversity in pre- and post-extinction paleocommunities: a test of ecological restructuring after the end-Permian mass extinction. Earth-Science Reviews 136, 339–49.CrossRefGoogle Scholar
Drzewiecki, P. A. & Simó, J. A. 2002. Depositional processes, triggering mechanisms and sediment composition of carbonate gravity flow deposits: examples from the Late Cretaceous of the south-central Pyrenees, Spain. Sedimentary Geology 146, 155–89.Google Scholar
Duval, B. C., Cramez, C. & Vail, P. R. 1998. Stratigraphic cycles and major marine source rocks. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P.-C.h. et al.), pp. 4352. SEPM (Society for Sedimentary Geology), Special Publication no. 60.Google Scholar
Einsele, G. 2000. Sedimentary Basins: Evolution, Facies, and Sediment Budget, 2nd edn. Berlin: Springer, 792 pp.Google Scholar
Elrick, M. 1996. Sequence stratigraphy and platform evolution of Lower–Middle Devonian carbonates, eastern Great Basin. Geological Society of America Bulletin 108, 392416.Google Scholar
Escudero-Mozo, M. J., Martín-Chivelet, J., Goy, A. & López-Gómez, J. 2014. Middle-Upper Triassic carbonate platforms in Minorca (Balearic islands): implications for Western Tethys correlations. Sedimentary Geology 310, 4158.Google Scholar
Esteban, M. & Klappa, C. F. 1983. Subaerial exposure environments. In Carbonate Depositional Environments (eds Scholle, P. A., Bebout, D. G. & Moore, C. H.), pp. 154. American Association of Petroleum Geologists, Memoir no. 33.Google Scholar
Feist-Burkhardt, S. et al. (16 co-authors). 2008. Triassic. In The Geology of Central Europe (ed. McCann, T.), pp. 749821. London: Geological Society of London.Google Scholar
Ferry, S., Grosheny, D., Backert, N. & Atrops, F. 2015. The base-of-slope carbonate breccia system of Céüse (Tithonian, S-E France): occurrence of progradational stratification in the head plug of coarse granular flow deposits. Sedimentary Geology 317, 7186.CrossRefGoogle Scholar
Fischer, A. G., D'Argenio, B., Silva, I. P., Weissert, H. & Ferreri, V. 2004. Cyclostratigraphic approach to Earth's history: an introduction. In Cyclostratigraphy: Approaches and Case Histories (eds D'Argenio, B., Fischer, A. G., Silva, I. P., Weiser, H. & Ferreri, V.), pp. 516. SEPM (Society for Sedimentary Geology), Special Publication no. 81.Google Scholar
Flügel, E. 2002. Triassic reef patterns. In Phanerozoic Reef Patterns (eds Kiessling, W., Flügel, E. & Golonka, J.), pp. 391463. SEPM (Society for Sedimentary Geology), Special Publication no. 72.Google Scholar
Flügel, E. 2004. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Berlin: Springer, 976 pp.Google Scholar
Föhlisch, K. & Voigt, T. 2001. Synsedimentary deformation in the Lower Muschelkalk of the Germanic Basin. In Particulate Gravity Currents (eds McCaffrey, W. D., Kneller, B. C. & Peakall, J.), pp. 279–97. International Association of Sedimentologists, Special Publication no. 31.Google Scholar
Fraiser, M. L. & Bottjer, D. J. 2007. When bivalves took over the world. Paleobiology 33, 397413.Google Scholar
Franz, M., Kaiser, S. I., Fischer, J., Heunisch, C., Kustatscher, E., Luppold, F. W., Berner, U. & Röhling, H.-G. 2015. Eustatic and climatic control on the Upper Muschelkalk Sea (late Anisian/Ladinian) in the Central European Basin. Global and Planetary Change 135, 127.Google Scholar
Gaetani, M. et al. (35 co-authors). 2000a. Early Ladinian (238–235 Ma). In Atlas Peri-Tethys, Paleogeographical Maps (eds Dercourt, J. et al.). CCGM/CGMW, Paris (map 5).Google Scholar
Gaetani, M. et al. (17 co-authors). 2000b. Olenekian (245–243 Ma). In Atlas Peri-Tethys, Paleogeographical Maps (eds Dercourt, J. et al.), map 4. Paris: CCGM/CGMW.Google Scholar
Ganev, M. 1974. Stand der Kenntnisse über die Stratigraphie der Trias Bulgariens. Die Stratigraphie der alpin-mediterranean Trias: simposium. Österreichische Akademie der Wissenschaften, Schriftenreihe der Erdwissen-schaftlichen Kommission 2, 93–6.Google Scholar
Garzanti, E., Padoan, M., Andò, S., Resentini, A., Vezzoli, G. & Lustrino, M. 2013. Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. Journal of Geology 121, 547–80.Google Scholar
Gattolin, G., Preto, N., Breda, A., Franceschi, M., Isotton, M. & Gianolla, P. 2015. Sequence stratigraphy after the demise of a high-relief carbonate platform (Carnian of the Dolomites): sea-level and climate disentangled. Palaeogeography, Palaeoclimatology, Palaeoecology 423, 117.Google Scholar
Gawthorpe, R. L. 1986. Sedimentation during carbonate ramp-to-slope evolution in a tectonically active area: Bowland Basin (Dinantian), northern England. Sedimentology 33, 185206.Google Scholar
Gianolla, P. & Jaquin, T. 1998. Triassic sequence stratigraphic framework of Western European basins. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P.-C.h. et al.), pp. 643–50. SEPM (Society for Sedimentary Geology), Special Publication no. 60.Google Scholar
Ginsburg, R. N. 1971. Landward movement of carbonate mud: new model for regressive cycles in carbonates. American Association of Petroleum Geologists Annual Meeting, Abstracts with Programs 55, 340 pp.Google Scholar
Gischler, E., Dietrich, S., Harris, D., Webster, J. M. & Ginsburg, R. N. 2013. A comparative study of modern carbonate mud in reefs and carbonate platforms: mostly biogenic, some precipitated. Sedimentary Geology 292, 3655.Google Scholar
Gischler, E. & Lomando, A. J. 2005. Offshore sedimentary facies of a modern carbonate ramp, Kuwait northwestern Arabian–Persian Gulf. Facies 50, 443–62.Google Scholar
Goldhammer, R. K., Dunn, P. A. & Hardie, L. A. 1987. High frequency glacio-esutatic sea-level oscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonates in northern Italy. American Journal of Science 287, 853–92.Google Scholar
Golonka, J. 2007. Phanerozoic paleoenvironment and paleolithofacies maps. Mesozoic. Geologia 33, 211–64.Google Scholar
Gomez, F. J. & Astini, R. A. 2015. Sedimentology and sequence stratigraphy from a mixed (carbonate–siliciclastic) rift to passive margin transition: the Early to Middle Cambrian of the Argentine Precordillera. Sedimentary Geology 316, 3961.Google Scholar
Gómez-Pérez, I., Fernández-Mendiola, P. A. & García-Mondéjar, J. 1998. Constructional dynamics for a Lower Cretaceous carbonate ramp (Gorbea Massif, north Iberia). In Carbonate Ramps (eds Wright, V. P. & Burchette, T. P.), pp. 229–52. Geological Society of London, Special Publication no. 149.Google Scholar
Götz, A. E. & Török, Á. 2008. Correlation of Tethyan and Peri-Tethyan long-term and high-frequency eustatic signals (Anisian, Middle Triassic). Geologica Carpathica 59, 307–17.Google Scholar
Haas, J. & Budai, T. 1995. Upper Permian–Triassic facies zones in the Transdanubian Range. Rivista Italiana di Paleontologia e Stratigrafia 101, 249–66.Google Scholar
Haas, J. & Budai, T. 1999. Triassic sequence stratigraphy of the Transdanubian Range (Hungary). Geologica Carpathica 50, 459–75.Google Scholar
Haas, J., Budai, T. & Raucsik, B. 2012. Climatic controls on sedimentary environments in the Triassic of the Transdanubian Range (Western Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology 353–355, 3144.CrossRefGoogle Scholar
Haas, J., Kovacs, S., Krystyn, L. & Lein, R. 1995. Significance of Late Permian–Triassic facies zones in terrane reconstruction in the Alpine–North Pannonian domain. Tectonophysics 242, 1940.Google Scholar
Haas, J., Piros, O., Budai, T., Görög, Á., Mandl, G. W. & Lobitzer, H. 2010. Transition between the massive reef-backreef and cyclic lagoon facies of the Dachstein Limestone in the southern part of the Dachstein Plateau, Northern Calcareous Alps, Upper Austria and Styria. Abhandlungen der Geologischen Bundesanstalt 65, 3556.Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic – 250 million years ago to present. Science 235, 1156–67.Google Scholar
Hill, J., Wood, R., Curtis, A. & Tetzlaff, D. M. 2012. Preservation of forcing signals in shallow water carbonate sediments. Sedimentary Geology 275–276, 7992.Google Scholar
Hillgärtner, H. 1998. Discontinuity surfaces on a shallow-marine carbonate platform (Berriasian, Valanginian, France and Switzerland). Journal of Sedimentary Research 68, 1093–108.Google Scholar
Hine, A. C., Brooks, G. R., Davis, R. A. Jr, Duncan, D. S., Locker, S. D., Twichell, D. C. & Gelfenbaum, G. 2003. The west-central Florida inner shelf and coastal system: a geologic conceptual overview and introduction to the special issue. Marine Geology 200, 117.Google Scholar
Hips, K. 1998. Lower Triassic storm-dominated ramp sequnce in northern Hungary: an example of evolution from homoclinal through distally steepened ramp to Middle Triassic flat-topped platform. In Carbonate Ramps (eds Wright, V. P. & Burchette, T. P.), pp. 315–38. Geological Society of London, Special Publication no. 149.Google Scholar
Hips, K. 2007. Facies pattern of western Tethyan Middle Triassic black carbonates: the example of Gutenstein Formation in Silica Nappe, Carpathians, Hungary, and its correlation to formation of adjoining areas. Sedimentary Geology 194, 99114.Google Scholar
Holz, M. 2015. Mesozoic paleogeography and paleoclimates: a discussion of the diverse greenhouse and hothouse conditions of an alien world. Journal of South American Earth Sciences 61, 91107.Google Scholar
Hornung, T. & Brandner, R. 2005. Biostratigraphy of the Reingraben Turnover (Hallstatt Facies Belt): local black shale events controlled by the regional tectonics, climatic change and plate tectonics. Facies 51, 460–79.CrossRefGoogle Scholar
Hornung, T., Brandner, R., Krystyn, L., Joachimski, M. M. & Keim, L. 2007. Multistratigraphic constraints on the NW Tethyan ‘Carnian Crisis’. In The Global Triassic (eds Lucas, S. G. & Spielman, J. A.), pp. 5967. New Mexico Museum of Natural History & Science Bulletin no. 41.Google Scholar
Hornung, T., Krystyn, L. & Brandner, R. 2007. A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity decline: evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)? Journal of Asian Earth Sciences 30, 285302.Google Scholar
Jaglarz, P. & Szulc, J. 2003. Middle Triassic evolution of the Tatricum sedimentary basin: an attempt of sequence stratigraphy to the Wierchowa Unit in the Polish Tatra Mts. Annales Societatis Geologorum Poloniae 73, 169–82.Google Scholar
James, N. P., Bone, Y., Kyser, T. K., Dix, G. R. & Collins, L. B. 2004. Carbonate sedimentation on a tropical oceanic ramp: northwestern Australia. Sedimentology 51, 127.Google Scholar
Jones, B. & Desrochers, A. 1992. Shallow platform carbonates. In Facies Models: Response to Sea Level Change (eds Walker, R. G. & James, N. P.), pp. 277302. Geological Association of Canada.Google Scholar
Keim, L., Spötl, C. & Brandner, R. 2006. The aftermath of the Carnian carbonate platform demise: a basinal perspective (Dolomites, Southern Alps). Sedimentology 53, 361–86.CrossRefGoogle Scholar
Kenter, J. A. M. 1990. Carbonate platform flanks: slope angle and sediment fabric. Sedimentology 37, 777–94.Google Scholar
Kiessling, W. 2010. Reef expansion during the Triassic: spread of photosymbiosis balancing climatic cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 1119.Google Scholar
Kiessling, W., Flügel, E. & Golonka, J. 2003. Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 36, 195225.Google Scholar
Kietzmann, D. A., Palma, R. M., Riccardi, A. C., Martín-Chivelet, J. & López-Gómez, J. 2014. Sedimentology and sequence stratigraphy of a Tithonian–Valanginian carbonate ramp (Vaca Muerta Formation): a misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén Basin, Argentina. Sedimentary Geology 302, 6486.Google Scholar
Kim, J. C. & Lee, Y. I. 1996. Marine diagenesis of Lower Ordovician carbonate sediments (Dumugol Formation), Korea: cementation in a calcite sea. Sedimentary Geology 105, 241–57.Google Scholar
Kim, Y.-H. G., Rhee, C. W., Woo, J. & Park, T.-Y. S. 2014. Depositional systems of the Lower Ordovician Mungok Formation in Yeongwol, Korea: implications for the carbonate ramp facies development. Geosciences Journal 18, 397417.Google Scholar
Knaust, D. 2000. Signatures of tectonically controlled sedimentation in Lower Muschelkalk carbonates (Middle Triassic) of the Germanic Basin. In Epicontinental Triassic (eds Bachmann, G. H. & Lerche, I.), Zentralblatt für Geologie und Paläontologie Teil I, 9–10, 893924.Google Scholar
Knaust, D. & Costamagna, L. G. 2012. Ichnology and sedimentology of the Triassic carbonates of North-west Sardinia, Italy. Sedimentology 59, 1190–207.Google Scholar
Knight, I. & Boyce, W. D. 2009. The Reluctant Head Formation, Goose Arm thrust stack, Newfoundland Humber zone: new observations on the stratigraphy, biostratigraphy and implications for the evolution of the Cambrian–Ordovician shelf. Current Research: Newfoundland and Labrador Department of Natural Resources, Geological Survey Report 09–1, 183202.Google Scholar
Koerschner, W. F. I. & Read, J. F. 1989. Field and modelling of Cambrian cycles, Virginia Appalachians. Journal of Sedimentary Petrology 59, 654–87.Google Scholar
Kovács, S. et al. (14 co-authors). 2011. Triassic evolution of the tectonostratigraphic units of the Circum-Pannonian Region. Jahrbuch der Geologischen Bundesanstalt 151, 199280.Google Scholar
Kozur, H. W. & Bachmann, G. H. 2010. The Middle Carnian Wet Intermezzo of the Stuttgart Formation (Schilfsandstein), Germanic Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 107–19.Google Scholar
Kullberg, J. C., Oloriz, F., Marques, B., Caetano, P. S. & Rocha, R. B. 2001. Flat-pebble conglomerates: a local marker for Early Jurassic seismicity related to syn-rift tectonics in the Sesimbra area (Lusitanian Basin, Portugal). Sedimentary Geology 139, 4970.Google Scholar
Kwon, Y. K., Chough, S. K., Choi, D. K. & Lee, D. J. 2002. Origin of limestone conglomerates in the Choson Supergroup (Cambro-Ordovician), mid-east Korea. Sedimentary Geology 146, 265–83.Google Scholar
Laya, J. C., Tucker, M. E. & Perez-Huerta, A. 2013. Metre-scale cyclicity in Permian ramp carbonates of equatorial Pangea (Venezuelan Andes): implications for sedimentation under tropical Pangea conditions. Sedimentary Geology 292, 1535.Google Scholar
Lehrmann, D. J. & Goldhammer, R. K. 1999. Secular variation in parasequence and facies stacking patterns of platform carbonates: a guide to application of stacking-patterns analysis in strata of diverse ages and settings. In Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops and Models (eds Harris, P. M., Saller, A. H. & Simo, J. A.), pp. 187226. SEPM (Society for Sedimentary Geology), Special Publication no. 63.Google Scholar
Lehrmann, D. J., Yang, W., Wei, J. Y., Yu, Y. Y. & Xiao, J. F. 2001. Lower Triassic peritidal cyclic limestone: an example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 173, 103–23.Google Scholar
Léonide, P., Floquet, M. & Villier, L. 2007. Interaction of tectonics, eustasy, climate and carbonate production on the sedimentary evolution of an early/middle Jurassic extensional basin (Southern Provence Sub-basin, SE France). Basin Research 19, 125–52.Google Scholar
Light, J. L. & Wilson, J. B. 1998. Cool-water carbonate deposition on the West Shetland Shelf: a modern distally steepened ramp. In Carbonate Ramps (eds Wright, V. P. & Burchette, T. P.), pp. 73105. Geological Society of London, Special Publication no. 149.Google Scholar
Mader, D. & Čatalov, G. 1992 a. Iskar valley (Bulgaria): Buntsandstein. In Evolution of Paleoecology and Paleoenvironment of Permian and Triassic Fluvial Basins in Europe. Volume 2: Southeastern Europe and Index (ed. Mader, D.), pp. 919–98. Stuttgart: Gustav Fischer.Google Scholar
Mader, D. & Čatalov, G. 1992 b. Vitoša Mountains and Belogradčik Anticlinorium (Bulgaria): Buntsandstein. In Evolution of Paleoecology and Paleoenvironment of Permian and Triassic Fluvial Basins in Europe. Volume 2: Southeastern Europe and Index (ed. Mader, D.), pp. 9991040. Stuttgart: Gustav Fischer.Google Scholar
Mandl, G. W. 2000. The Alpine sector of the Tethyan shelf: examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitteilungen der Österreichischen Geologischen Gesellschaft 92, 6177.Google Scholar
Marcoux, J. et al. (11 co-authors). 1993. Late Anisian palaeoenvironments (237–234 Ma). In Atlas Tethys Palaeoenvironmental Maps (eds Dercourt, J., Ricou, L. E. & Vrielynck, B.). Rueil-Malmaison: BEICIP-FRANLAB.Google Scholar
Markello, J. R. & Read, J. F. 1981. Carbonate ramp-to-deeper shale shelf transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, southwest Virginia Appalachians. Sedimentology 28, 573–97.Google Scholar
Marsaglia, K. M. & Klein, G. D. 1983. The paleogeography of Paleozoic and Mesozoic storm depositional systems. Journal of Geology 91, 117–42.Google Scholar
Martin, L. G., Montañez, I. P. & Bishop, J. W. 2012. A paleotropical carbonate-dominated archive of Carboniferous icehouse dynamics, Bird Spring Fm., Southern Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 329–330, 6482.Google Scholar
Martin-Rojas, I., Somma, R., Delgado, F., Estévez, A., Iannace, A. & Zamparelli, V. 2012. The Triassic platform of the Gador-Turon unit (Alpujarride Complex, Betic Cordillera, S Spain): climate vs. tectonic factors in controlling platform architecture. Facies 58, 297323.Google Scholar
Mercedes-Martín, R., Arenas, C. & Salas, R. 2014. Diversity and factors controlling widespread occurrence of syn-rift Ladinian microbialites in the western Tethys (Triassic Catalan Basin, NE Spain). Sedimentary Geology 313, 6890.Google Scholar
Michalík, J. 1994. Notes on the paleogeography and paleotectonics of the Western Carpathian area during the Mesozoic. Mitteilungen der Österreichischen Geologischen Gesellschaft 86, 101–10.Google Scholar
Michalík, J., Masaryk, P., Lintnerová, O., Papšová, J., Jendrejáková, O. & Reháková, D. 1992. Sedimentology and facies of a storm dominated Middle Triassic carbonate ramp (Vysoká Formation, Malé Karpaty Mts., Western Carpathians). Geologica Carpathica 43, 213–30.Google Scholar
Montenat, C., Barrier, P., Ott d'Estevou, P. & Hibsch, C. 2007. Seismites: an attempt at critical analysis and classification. Sedimentary Geology 196, 530.Google Scholar
Moretti, M. & Van Loon, A. J. 2014. Restrictions to the application of ‘diagnostic’ criteria for recognizing ancient seismites. Journal of Palaeogeography 3, 162–73.Google Scholar
Mount, J. F. & Kidder, D. 1993. Conbined flow origin of edgewise intraclast conglomerates: Sellick Hill Formation (Lower Cambrian), South Australia. Sedimentology 40, 315–29.Google Scholar
Mukhopadhyay, J. & Chaudhuri, A. K. 2003. Shallow to deep-water deposition in a cratonic basin: an example from the Proterozoic Penganga Group, Pranhita–Godavari Valley, India. Journal of Asian Earth Sciences 21, 613–22.Google Scholar
Muttoni, G., Gaetani, M., Budurov, K., Zagorchev, I., Trifonova, E., Ivanova, D., Petrounova, L. & Lowrie, W. 2000. Middle Triassic paleomagnetic data from northern Bulgaria: constraints on Tethyan magnetostratigraphy and paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 223–37.Google Scholar
Myrow, P. M., Tice, L., Archuleta, B., Clark, B., Taylor, J. F. & Ripperdan, R. L. 2004. Flat-pebble conglomerate: its multiple origins and relationship to metre-scale depositional cycles. Sedimentology 51, 973–96.Google Scholar
Nagy, Z. R. 1999. Platform-basin transition and depositional models for the Upper Triassic (Carnian) Sándorhegy Limestone, Balaton Highland, Hungary. Acta Geologica Hungarica 42, 267–99.Google Scholar
Nakada, R., Ogawa, K., Suzuki, N., Takahashi, S. & Takahashi, Y. 2014. Late Triassic compositional changes of aeolian dusts in the pelagic Panthalassa: response to the continental climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 6175.Google Scholar
Nützel, A. 2005. Recovery of gastropods in the Early Triassic. Comptes Rendus Palevol 4, 501–15.Google Scholar
Olivier, N., Brayard, A., Vennin, E., Escarguel, G., Fara, E., Bylund, K. G., Jenks, J. F., Caravaca, G. & Stephen, D. A. 2015. Evolution of depositional settings in the Torrey area during the Smithian (Early Triassic, Utah, USA) and their significance for the biotic recovery. Geological Journal. published online 21 February 2015. doi: 10.1002/gj.2663.Google Scholar
Owen, G., Moretti, M. & Alfaro, P. 2011. Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology 235, 133–40.CrossRefGoogle Scholar
Pálfy, J. 2003. The Pelsonian brachiopod fauna of the Balaton Highland. In The Pelsonian Substage on the Balaton Highland (Middle Triassic, Hungary) (ed. Vörös, A.). Geologica Hungarica, Series Palaeontologica 55, 139–58.Google Scholar
Payne, J. L., Lehrmann, D. J., Jiayong, W. & Knoll, A. H. 2006. The pattern and timing of biotic recovery from the End-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21, 6385.Google Scholar
Payne, J. L., Summers, M., Rego, B. L., Altiner, D., Wei, J., Yu, M. & Lehrmann, D. J. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in South China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology 37, 409–25.Google Scholar
Pedley, M. 1998. A review of sediment distributions and processes in Oligo-Miocene ramps of Southern Italy and Malta (Mediterranean divide). In Carbonate Ramps (eds Wright, V. P. & Burchette, T. P.), pp. 163–80. Geological Society of London, Special Publication no. 149.Google Scholar
Pedley, M. & Carannante, G. 2006. Cool-water carbonate ramps: a review. In Cool-water Carbonates: Depositional Systems and Paleoenvironmental Controls (eds Pedley, M. & Carannante, G.), pp. 19. Geological Society of London, Special Publication no. 255.Google Scholar
Pedley, H. M., Cugno, G. & Grasso, M. 1992. Gravity slide and resedimentation processes in a Miocene carbonate ramp, Hyblean Plateau, southeastern Sicily. Sedimentary Geology 79, 189202.Google Scholar
Pérez-López, A. & Pérez-Valera, F. 2012. Tempestite facies models for the epicontinental Triassic carbonates of the Betic Cordillera (southern Spain). Sedimentology 59, 646–78.Google Scholar
Pérez-Valera, F. & Pérez-López, A. 2008. Stratigraphy and sedimentology of Muschelkalk carbonates of the Southern Iberian Continental Palaeomargin (Siles and Cehegín Formations, Southern Spain). Facies 54, 6187.Google Scholar
Philip, J. 2003. Peri-Tethyan neritic carbonate areas: distribution through time and driving factors. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 1937.Google Scholar
Playton, T. E. & Kerans, C. 2002. Slope and toe-of-slope deposits shed from a late Wolfcampian tectonically active carbonate ramp margin. Transactions of the Gulf Coast Association of Geological Societies 52, 811–20.Google Scholar
Pomar, L. 2001 a. Ecological control of sedimentary accommodation: evolution from carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 175, 249–72.Google Scholar
Pomar, L. 2001 b. Types of carbonate platforms: a genetic approach. Basin Research 13, 313–34.Google Scholar
Pomar, L., Bassant, P., Brandano, M., Ruchonnet, C. & Janson, X. 2012. Impact of carbonate producing biota on platform architecture: insights from Miocene examples of the Mediterranean region. Earth-Science Reviews 113, 186211.Google Scholar
Pomar, L., Brandano, M. & Westphal, H. 2004. Environmental factors influencing skeletal-grain sediment associations: a critical review of Miocene examples from the Western-Mediterranean. Sedimentology 51, 627–51.Google Scholar
Pomar, L. & Hallock, P. 2008. Carbonate factories: a conundrum in sedimentary geology. Earth-Science Reviews 87, 134–69.Google Scholar
Pomar, L. & Kendall, C. G. S. C. 2008. Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. In Controls on Carbonate Platform and Reef Development (eds Lukasik, J. & Simo, A.), pp. 187216. SEPM (Society for Sedimentary Geology), Special Publication no. 89.Google Scholar
Pomar, L., Obrador, A. & Westphal, H. 2002. Sub-wavebase cross-bedded grainstones on a distally steepened carbonate ramp, Upper Miocene, Menorca, Spain. Sedimentology 49, 139–69.Google Scholar
Pomoni-Papaioannou, F. 2008. Facies analysis of Lofer cycles (Upper Triassic) in the Argolis Peninsula (Greece). Sedimentary Geology 208, 7987.Google Scholar
Posenato, R. 2008. Patterns of bivalve biodiversity from Early to Middle Triassic in the Southern Alps (Italy): regional vs. global events. Palaeogeography, Palaeoclimatology, Palaeoecology 261, 145–59.Google Scholar
Posenato, R., Holmer, L. E. & Prinoth, H. 2014. Adaptive strategies and environmental significance of lingulid brachiopods across the late Permian extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 399, 373–84.Google Scholar
Pratt, B. R. 2010. Peritidal carbonates. In Facies Models 4 (eds James, N. P. & Dalrymple, R. W.), pp. 401–20. St John's: Geological Association of Canada.Google Scholar
Preto, N., Kustatscher, E. & Wignall, P. B. 2010. Triassic climates – state of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 110.Google Scholar
Preto, N., Spötl, C., Mietto, P., Gianolla, P., Riva, A. & Manfrin, S. 2005. Aragonite dissolution, sedimentation rates and carbon isotopes in deep-water hemipelagites (Livinallongo Formation, Middle Triassic, northern Italy). Sedimentary Geology 181, 173–94.Google Scholar
Pruss, S. B. & Bottjer, D. J. 2005. The reorganization of reef communities following the end-Permian mass extinction. Comptes Rendus Palevol 4, 553–68.Google Scholar
Pruss, S. B., Corsetti, F. & Bottjer, D. J. 2005. The unusual sedimentary rock record of the Early Triassic: a case study from the southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 3352.Google Scholar
Puga-Bernabéu, Á., Martín, J. M., Braga, J. C. & Aguirre, J. 2014. Offshore remobilization processes and deposits in low-energy temperate-water carbonate-ramp systems: examples from the Neogene basins of the Betic Cordillera (SE Spain). Sedimentary Geology 304, 1127.Google Scholar
Read, J. F. 1982. Carbonate platforms of passive (extensional) continental margins – types, characteristics and evolution. Tectonophysics 81, 195212.Google Scholar
Read, J. F. 1985. Carbonate platform facies models. American Association of Petroleum Geologists Bulletin 69, 121.Google Scholar
Read, J. F. 1998. Phanerozoic carbonate ramps from greenhouse, transitional and ice-house worlds: clues from field and modelling studies. In Carbonate Ramps (eds Wright, V. P. & Burchette, T. P.), pp. 107–36. Geological Society of London, Special Publication no. 149.Google Scholar
Riegl, B., Poiriez, A., Janson, X. & Bergman, K. L. 2010. The gulf: facies belts, physical, chemical, and biological parameters of sedimentation on a carbonate ramp. In Carbonate Depositional Systems: Assessing Dimensions and Controlling Parameters. The Bahamas, Belize and the Persian/Arabian Gulf (eds Westphal, H., Riegl, B. & Eberli, G. P.), pp. 145213. Berlin: Springer.Google Scholar
Ries, J. 2010. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795–849.Google Scholar
Rigo, M., Preto, N., Roghi, G., Tateo, F. & Mietto, P. 2007. A rise in the carbonate compensation depth of western Tethys in the Carnian (Late Triassic): deep-water evidence for the Carnian Pluvial Event. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 188205.Google Scholar
Roghi, G., Gianolla, P., Minarelli, L., Pilati, C. & Preto, N. 2010. Palynological correlation of Carnian humid pulses throughout western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 89106.Google Scholar
Rosales, I. 1999. Controls on carbonate-platform evolution on active fault blocks: the Lower Cretaceous Castro Urdiales Platform (Aptian-Albian, Northern Spain). Journal of Sedimentary Research 69, 447–65.Google Scholar
Ruffell, A., Simms, M. J. & Wignall, P. B. 2015. The Carnian Humid Episode of the late Triassic: a review. Geological Magazine 153, 271–84.Google Scholar
Rüffer, T. 1995. Entwicklung einer Karbonat-Plattform: Fazies, Kontrollfaktoren und Sequenzstratigraphie in der Mitteltrias der westlichen Nördlichen Kalkalpen (Tirol, Bayern). GAEA Heidelbergensis 1, 1288.Google Scholar
Rüffer, T. & Zamparelli, V. 1997. Facies and biota of Anisian to Carnian carbonate platforms in the Northern Calcareous Alps (Tyrol and Bavaria). Facies 37, 115–36.Google Scholar
Rychliński, T. & Szulc, J. 2005. Facies and sedimentary environments of the Upper Scythian–Carnian succession from the Belanské Tatry Mts., Slovakia. Annales Societatis Geologorum Poloniae 75, 155–69.Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305, 1922.Google Scholar
Satterley, A. K. 1996. The interpretation of cyclic successions of the Middle and Upper Triassic of the Northern and Southern Alps. Earth-Science Reviews 40, 181207.Google Scholar
Sattler, U., Immenhauser, A., Hillgärtner, H. & Esteban, M. 2005. Characterization, lateral variability and lateral extent of discontinuity surfaces on a carbonate platform (Barremian to Lower Aptian, Oman). Sedimentology 52, 339–61.Google Scholar
Schlager, W. 2005. Carbonate Sedimentology and Sequence Stratigraphy. SEPM Concepts in Sedimentology 8. Tulsa, OK: SEPM (Society for Sedimentary Geology), 200 pp.Google Scholar
Sellwood, B. W. & Valdes, P. J. 2006. Mesozoic climates: general circulation models and the rock record. Sedimentary Geology 190, 269–87.Google Scholar
Şengor, A. M. C., Yılmaz, Y. & Sungurlu, O. 1984. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleo-Tethys. In Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 77112. Geological Society of London, Special Publication no. 17.Google Scholar
Senowbari-Daryan, B., Zühlke, R., Bechstädt, T. & Flügel, E. 1993. Anisian (Middle Triassic) buildups of the Northern Dolomites (Italy): the recovery of reef communities after the Permian/Triassic crisis. Facies 28, 181256.Google Scholar
Seyedmehdi, Z., George, A. D. & Tucker, M. E. 2016. Sequence development of a latest Devonian–Tournaisian distally-steepened mixed carbonate–siliciclastic ramp, Canning Basin, Australia. Sedimentary Geology 333, 164–83.Google Scholar
Shao, L., Wang, D., Cai, H., Wang, H., Lu, J. & Zhang, P. 2011. Ramp facies in an intracratonic basin: a case study from the Upper Devonian and Lower Carboniferous in central Hunan, southern China. Geoscience Frontiers 2, 409–19.Google Scholar
Sherman, A., Narbonne, G. & James, N. 2001. Anatomy of a cyclically packaged Mesoproterozoic carbonate ramp in northern Canada. Sedimentary Geology 139, 171203.Google Scholar
Simms, M. J., Ruffell, A. H. & Johnson, L. A. 1995. Biotic and climatic changes in the Carnian (Triassic) of Europe and adjacent areas. In In the Shadow of the Dinosaurs. Early Mesozoic Tetrapods (eds Fraser, N. C. & Sues, H. D.), pp. 352–65. Cambridge: Cambridge University Press.Google Scholar
Song, H. et al. (12 co-authors). 2011. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39, 739–42.Google Scholar
Spalluto, L. 2012. Facies evolution and sequence chronostratigraphy of a ‘mid’-Cretaceous shallow-water carbonate succession of the Apulian Carbonate Platform from the northern Murge area (Apulia, southern Italy). Facies 58, 1736.Google Scholar
Stanley, G. D. Jr. 1988. The history of early Mesozoic reef communities: a three-step process. Palaios 3, 170–83.Google Scholar
Stanley, S. M. 2008. Effects of global seawater chemistry on biomineralization: past, present, and future. Chemical Reviews 108, 4483–98.Google Scholar
Stanley, S. M. & Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144, 319.Google Scholar
Stanton, R. J. Jr & Flügel, E. 1995. An accretionally distally steepened ramp at an intrashelf basin: an alternative explanation for the Upper Triassic Steinplatte ‘reef’ (Northern Calcareous Alps, Austria). Sedimentary Geology 95, 269–86.Google Scholar
Stefani, M., Furin, S. & Gianolla, P. 2010. The changing climate framework and depositional dynamics of Triassic carbonate platforms from the Dolomites. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 4357.Google Scholar
Strasser, A. 1991. Lagoonal-peritidal sequences in carbonate environments: autocyclic and allocyclic processes. In Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.), pp. 709–21. Berlin: Springer.Google Scholar
Strasser, A., Hillgärtner, H., Hug, W. & Pittet, B. 2000. Third-order depositional sequences reflecting Milankovitch cyclicity. Terra Nova 12, 303–11.Google Scholar
Strasser, A., Pittet, B., Hillgärtner, H. & Pasquier, J.-B. 1999. Depositional sequences in shallow carbonate dominated sedimentary systems: concepts for a high resolution analysis. Sedimentary Geology 128, 201–21.Google Scholar
Sumner, D. & Beukes, N. 2006. Sequence stratigrapic development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa. South African Journal of Geology 109, 1122.Google Scholar
Suttner, L., Basu, A. & Mack, G. 1981. Climate and the origin of quartz arenites. Journal of Sedimentary Petrology 51, 1235–46.Google Scholar
Sýkora, M., Siblík, M. & Soták, J. 2011. Siliciclastics in the Upper Triassic dolomite formations of the Krížna Unit (Malá Fatra Mountains, Western Carpathians): constraints for the Carnian Pluvial Event in the Fatric Basin. Geologica Carpathica 62, 121–38.Google Scholar
Szulc, J. 2000. Middle Triassic evolution of the northern Peri-Tethys area as influenced by early opening of the Tethys ocean. Annales Societatis Geologorum Poloniae 70, 148.Google Scholar
Testa, V. & Bosence, D. W. J. 1998. Carbonate-siliciclastic sedimentation on a high-energy, ocean-facing, tropical ramp, NE Brazil. In Carbonate Ramps (eds Wright, V. P. & Burchette, T. P.), pp. 5571. Geological Society of London, Special Publication no. 149.Google Scholar
Thomson, D., Rainbird, R. H. & Dix, G. 2014. Architecture of a Neoproterozoic intracratonic carbonate ramp succession: Wynniatt Formation, Amundsen Basin, Arctic Canada. Sedimentary Geology 299, 119–38.Google Scholar
Török, Á. 1998. Controls on development of Mid-Triassic ramps: examples from southern Hungary. In Carbonate Ramps (eds Wright, V. P. & Burchette, T. P.), pp. 339–67. Geological Society of London, Special Publication no. 149.Google Scholar
Török, Á. 2000. Muschelkalk carbonates in southern Hungary: an overview and comparison to German Muschelkalk. In Epicontinental Triassic (eds Bachmann, G. H. & Lerche, I.), Zentralblatt für Geologie und Paläontologie Teil I, 9–10, 10851103.Google Scholar
Torti, V. & Angiolini, L. 1997. Middle Triassic brachiopods from Val Parina, Bergamasc Alps, Italy. Rivista Italiana di Paleontologia e Stratigrafia 103, 149–72.Google Scholar
Tresch, J. & Strasser, A. 2011. Allogenic and autogenic processes combined in the formation of shallow-water carbonate sequences (Middle Berriasian, Swiss and French Jura Mountains). Swiss Journal of Geosciences 104, 299322.Google Scholar
Tronkov, D. 1963. Charakter des altkimmerischen Stockwerkbaus, Typ und Zeit der altkimmerischen tektonischen Bewegungen in Nordwest Bulgarian. Travaux sur la Géologie de Bulgarie, Série Stratigraphie et Tectonique 5, 171–96 (in Bulgarian with Russian and German summaries).Google Scholar
Tronkov, D. 1966. Ein Fall gut ausgedrückten vortriassischen Paläoreliefs in Bulgarien. Bulletin of the ‘Strašimir Dimitrov’ Institute of Geology 15, 159–68 (in Bulgarian with German summary).Google Scholar
Tronkov, D. 1968 a. Die Grenze untere Trias – mittlere Trias in Bulgarien. Bulletin of the Geological Institute, Series Paleontology 17, 113–31 (in Bulgarian with German summary).Google Scholar
Tronkov, D. 1968 b. Über die Paläogeographie der Trias in Bulgarien (untertriadisches Festland von Belogradchik). Comptes rendus de l'Académie bulgare des Sciences 21, 363–6.Google Scholar
Tronkov, D. 1969. Neue Angaben über das Alter der bunten Gesteine des ‘Räts’ (obere Trias) in Bulgarien. Comptes rendus de l'Académie bulgare des Sciences 22, 1169–72.Google Scholar
Tronkov, D. 1973. Grundlagen der Stratigraphie der Trias im Belogradčik-Antiklinorium (Nordwest Bulgarien). Bulletin of the Geological Institute, Series Stratigraphy and Lithology 22, 7398 (in Bulgarian with Russian and German summaries).Google Scholar
Tronkov, D. 1976. Triassische Ammoniten-Sukzessionen im Westlichen Balkangebirge in Bulgarien. Comptes rendus de l'Académie bulgare des Sciences 29, 1325–8.Google Scholar
Tronkov, D. 1981. Stratigraphy of the Triassic system in part of the West Srednogorie (West Bulgaria). Geologica Balcanica 11, 320 (in Russian with English summary).Google Scholar
Tronkov, D. 1983. Mogila Formation (Lower-Middle Triassic) in the Iskar River valley and Vratsa Balkan (Western Stara planina). Geologica Balcanica 13, 3752 (in Russian with English summary).Google Scholar
Tucker, M. E., Calvet, F. & Hunt, D. 1993. Sequence stratigraphy of carbonate ramps: system tracts, models and application to the Muschelkalk carbonate platform of eastern Spain. In Sequence Stratigraphy and Facies Associations (eds Posamentier, H. W. et al.), pp. 397415. International Association of Sedimentologists, Special Publication no. 18.Google Scholar
Tucker, M. & Garland, J. 2010. High-frequency cycles and their sequence stratigraphic context: orbital forcing and tectonic controls on Devonian cyclicity, Belgium. Geologica Belgica 13, 213–40.Google Scholar
Tucker, M. E. & Wright, V. P. 1990. Carbonate sedimentology. Oxford: Blackwell, 482 pp.Google Scholar
Turner, E. C. 2009. Mesoproterozoic carbonate systems in the Borden Basin, Nunavut. Canadian Journal of Earth Sciences 46, 915938.Google Scholar
Turpin, M., Gressier, V., Bahamonde, J. R. & Immenhauser, A. 2014. Component-specific petrographic and geochemical characterization of fine-grained carbonates along Carboniferous and Jurassic platform-to-basin transects. Sedimentary Geology 300, 6285.Google Scholar
Twitchett, R. J. & Oji, T. 2005. Early Triassic recovery of echinoderms. Comptes Rendus Palevol 4, 531–42.Google Scholar
Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N. & Perez-Cruz, C. 1991. The stratigraphic signatures of tectonics, eustasy and sedimentology – an overview. In Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.), pp. 617–59. Berlin: Springer.Google Scholar
Van de Kamp, P. C. 2010. Quartz sand and associated muds derived from felsic plutonic rocks in glacial to tropical humid climates. Journal of Sedimentary Research 80, 895918.Google Scholar
Vaptsarova, А., Chemberski, H. & Chatalov, G. 1984. Facies and evolution of sedimentary environments during the Triassic period in Bulgaria. Geologica Balcanica 14, 5776 (in Russian with English summary).Google Scholar
Warrlich, G., Bosence, D. & Waltham, D. 2005. 3D and 4D controls on carbonate depositional systems: sedimentological and sequence stratigraphic analysis of an attached carbonate platform and atoll (Miocene, Níjar Basin, SE Spain). Sedimentology 52, 363–89.Google Scholar
Wei, H., Shen, J., Schoepfer, S. D., Krystyn, L., Richoz, S. & Algeo, T. J. 2015. Environmental controls on marine ecosystem recovery following mass extinctions, with an example from the Early Triassic. Earth-Science Reviews 149, 108–35.Google Scholar
Whalen, M. T. & Beatty, T. W. 2008. Kamishak Formation, Puale Bay. In Bristol Bay–Alaska Peninsula Region, Overview of 2004–2007 Geologic Research (eds Reifenstuhl, R. R. & Decker, P. L.), pp. 105–29. Alaska Division of Geological and Geophysical Surveys, Report of Investigation 2008-1G.Google Scholar
Williams, H. D., Burgess, P. M., Wright, V. P., Della Porta, G. & Granjeon, D. 2011. Investigating carbonate platform types: multiple controls and a continuum of geometries. Journal of Sedimentary Research 81, 1837.Google Scholar
Wilson, M. E. J. 2012. Equatorial carbonates: an earth systems approach. Sedimentology 59, 131.Google Scholar
Wilson, M. E. J., Chambers, J. L. C., Manning, C. & Nas, D. S. 2012. Spatio-temporal evolution of a Tertiary carbonate platform margin and adjacent basinal deposits. Sedimentary Geology 271–272, 127.Google Scholar
Woods, A. D. 2013. Microbial ooids and cortoids fromthe Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: evidence for an Early Triassic microbial bloom in shallow depositional environments. Global and Planetary Change 105, 91101.Google Scholar
Woods, A. D. 2014. Assessing Early Triassic palaeoceanographic conditions via unusual sedimentary fabrics and features. Earth-Science Reviews 137, 618.Google Scholar
Wright, V. P. & Burchette, T. P. 1996. Shallow-water carbonate environments. In Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd edn (ed. Reading, H. G.), pp. 325–94. Oxford: Blackwell Science.Google Scholar
Wright, V. P. & Burchette, T. P. 1998. Carbonate ramps: an introduction. In Carbonate Ramps (eds Wright, V. P. & Burchette, T. P.), pp. 15. Geological Society of London, Special Publication no. 149.Google Scholar
Wright, V. P. & Burgess, P. M. 2005. The carbonate factory continuum, facies mosaics and microfacies: an appraisal of some of the key concepts underpinning carbonate sedimentology. Facies 51, 1723.Google Scholar
Wright, V. P. & Faulkner, T. J. 1990. Sediment dynamics of Early Carboniferous ramps: a proposal. Geological Journal 25, 139–44.Google Scholar
Yang, W. & Lehrmann, D. J. 2014. Peritidal carbonate cycles induced by carbonate productivity variations: a conceptual model for an isolated Early Triassic greenhouse platform in South China. Journal of Palaeogeography 3, 115–26.Google Scholar
Zagorchev, I. & Budurov, K. 1997. Outline of the Triassic paleogeography of Bulgaria. Albertiana 19, 1224.Google Scholar
Zagorchev, I. & Budurov, K. 2007. Stratigraphic problems of the Moesian Group (Upper Triassic, peri-Tethyan type), Bulgaria. Geologica Balcanica 36, 3153.Google Scholar
Zagorchev, I. & Dabovski, H. 2009. Triassic geology. In Geology of Bulgaria. Volume II. Part 5. Mesozoic geology (eds Zagorchev, I. et al.), pp. 39130. Sofia: Prof. Marin Drinov Academic Publishing House (in Bulgarian with English summary).Google Scholar
Zentmyer, R. A., Pufahl, P. K., James, N. P. & Hiatt, E. E. 2011. Dolomitization on an evaporitic Paleoproterozoic ramp: widespread synsedimentary dolomite in the Denault Formation, Labrador Trough, Canada. Sedimentary Geology 238, 116–32.Google Scholar
Zhang, Y., Chen, D., Zhou, X., Guo, Z., Wei, W. & Mutti, M. 2015. Depositional facies and stratal cyclicity of dolomites in the Lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, NW China. Facies 61, 124.Google Scholar
Ziegler, P. A. 1988. Evolution of the Arctic–North Atlantic and the Western Tethys. American Association of Petroleum Geologists, Memoir 43, 198 pp.Google Scholar
Ziegler, P. A. & Stampfli, G. M. 2001. Late Paleozoic–Early Mesozoic plate boundary reorganization: collapse of the Variscan orogen and opening of Neotethys. Natura Bresciana, Annali del Museo Civico di Scienze Naturali 25, 1734.Google Scholar
Zonneveld, J. P., Beatty, T. W., Williford, K. H., Orchard, M. J. & McRoberts, C. R. 2010. Stratigraphy and sedimentology of the lower Black Bear Ridge section, British Columbia: candidate for the base-Norian GSSP. Stratigraphy 7, 6182.Google Scholar
Zühlke, R. 2000. Fazies, hochauflösende Sequenzstratigraphie und Beckenentwicklung im Anis (Mittlere Trias) der Dolomiten (Südalpin, Italien). GAEA Heidelbergensis 6, 1368.Google Scholar