Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T05:25:13.805Z Has data issue: false hasContentIssue false

Myrmekites of exsolution and replacement origins—a discussion

Published online by Cambridge University Press:  01 May 2009

Evan R. Phillips
Affiliation:
Department of Geology, Wollongong University College, The University of New South Wales, Wollongong, N.S.W. 2500.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Correspondence
Copyright
Copyright © Cambridge University Press 1973

References

Ashworth, J. R. 1972. Myrmekites of exsolution and replacement origins. Geol. Mag. 109, 4562.CrossRefGoogle Scholar
Barker, D. S. 1970. Compositions of granophyre, myrmekite, and graphic granite. Bull. geol. Soc. Am. 81, 3339–50.CrossRefGoogle Scholar
Barth, T. F. W. 1969. Feldspars. Interscience, New York.Google Scholar
Becke, F. 1908. Über Myrmekit. Tschermaks miner. petrogr. Mitt. 27, 377–90.CrossRefGoogle Scholar
Bhattacharyya, C. 1971. Myrmekite from the charnockitic rocks of the Eastern Ghats, India. Geol. Mag. 108, 433–8.CrossRefGoogle Scholar
Carstens, H. 1967. Esxolution in ternary feldspars. II. Intergranular precipitation in alkali feldspar containing calcium in solid solution. Contr. Miner. Petrol. 14, 316–20.CrossRefGoogle Scholar
Hubbard, F. H. 1966. Myrmekite in charnockite from south-west Nigeria. Am. Miner. 51, 762–73.Google Scholar
Hubbard, F. H. 1967 a. Myrmekite in charnockite from south-west Nigeria: a reply. Am. Miner. 53, 920–3.Google Scholar
Hubbard, F. H. 1967 b. Exsolution myrmekite. Geol. Fören. Stockholm Förh. 89, 410–22.CrossRefGoogle Scholar
Hubbard, F. H. 1969. The proportionality of quartz in myrmekite: a contribution to the discussion. Am. Miner. 54, 989–9.Google Scholar
Kennan, P. S. 1972. Exsolved sillimanite in granite. Mineralog. Mag. 38, 763–4.CrossRefGoogle Scholar
Perry, K. Jr., 1968. Representation of mineral chemical analyses in 11-dimensional space: Part I, Feldspars. Lithos, 1, 201–18.CrossRefGoogle Scholar
Phillips, E. R. 1964. Myrmekite and albite in some granites of the New England Batholith, New South Wales. J. geol. Soc. Aust. 11, 4960.CrossRefGoogle Scholar
Phillips, E. R. 1972. A comment on ‘Plagioclase cation exchange equilibria with aqueous chloride solution: results at 700°C and 2000 bars in the presence of quartz’. Am. J. Sci. 272, 969–71.CrossRefGoogle Scholar
Phillips, E. R. & Ransom, D. M. 1968. The proportionality of quartz in myrmekite. Am. Miner. 53, 1411–13.Google Scholar
Phillips, E. R. & Ransom, D. M. 1970. Myrmekitic and non-myrmekitic plagioclase compositions in gneisses from Broken Hill, New South Wales. Mineralog. Mag. 37, 729–32.CrossRefGoogle Scholar
Phillips, E. R., Ransom, D. M. & Vernon, R. H. 1972. Myrmekite and muscovite developed by retrograde metamorphism at Broken Hill, New South Wales. Mineralog. Mag. 38, 570–8.CrossRefGoogle Scholar
Schwantke, A. 1909. Die Beimischung von Ca im Kalifeldspat und die Myrmekitbildung. Centralbl. Min. for 1909, 311–6.Google Scholar
Sharma, R. S. 1969. On banded gneisses and migmatites from Lavertezzo and Rozzera (Valle Verzasca, Centon Ticino). Schweiz. miner. petrogr. Mitt. 49, 199276.Google Scholar
Shelley, D. 1970. The origin of myrmekitic intergrowths and a comparison with rodeutectics in metals. Mineralog. Mag. 37, 674–81.CrossRefGoogle Scholar
Sturt, B. A. 1970. Exsolution during metamorphism with particular reference to feldspar solid solutions. Mineralog. Mag. 37, 815–32.CrossRefGoogle Scholar
Tuttle, O. F. 1952. Origin of the contrasting mineralogy of extrusive and plutonic salic rocks. J. Geol. 60, 107–24.CrossRefGoogle Scholar
Widenfalk, L. 1969. Electron micro-probe analyses of myrmekite plagioclase and coexisting feldspars. Lithos 2, 295309.CrossRefGoogle Scholar
Widenfalk, L. 1972. Myrmekite-like intergrowths in larvikite feldspars. Lithos 5, 255–67.CrossRefGoogle Scholar