Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T06:20:42.290Z Has data issue: false hasContentIssue false

SEDIMENTOLOGY: The ichnoassemblages of the Abad Member (Tortonian–Messinian), Vera Basin, SE Spain: implications for the regional tectonic and palaeogeographical evolution

Published online by Cambridge University Press:  12 April 2017

S. RÜTTERS*
Affiliation:
Steinmann Institute for Geology, Mineralogy and Palaeontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
T. McCANN
Affiliation:
Steinmann Institute for Geology, Mineralogy and Palaeontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
*
*Author for correspondence: s.ruetters@hzdr.de

Abstract

The Vera Basin is one of a series of interconnected Neogene–Quaternary-age basins located within the Betic Cordillera in SE Spain. The initial marine phase in the basin is represented by the sedimentary succession of the Abad Member (Tortonian–Messinian) and comprises mainly marls with varying amounts of intercalated siliciclastic–calcareous turbidites. The succession contains a rich ichnofauna comprising 12 ichnogenera (21 ichnospecies), which can be subdivided into a number of distinct ichnoassemblages. Detailed analysis of the distribution of these ichnoassemblages reveals that deposition occurred within the Nereites ichnofacies, more specifically, the Paleodictyon sub-ichnofacies, presumably in a lobe-type setting, and at epi- to mesobathyal depths (i.e. 200–1000 m). Changes within the ichnofacies suggest that there is a clear deep-through-to-shallow trend within the succession extending from the older (i.e. Almocáizar Corridor) to the younger (i.e. centre of the Vera Basin) parts of the succession. These changes coincide with the onset of the Messinian Salinity Crisis (MSC) across the region, and correlate well with the pre-MSC through to Lago Mare deposits.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augier, R., Agard, P., Monié, P., Jolivet, L., Robin, C. & Booth-Rea, G. 2005. Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): in situ40Ar/39Ar ages and P–T–d–t paths for the Nevado-Filabride complex. Journal of Metamorphic Geology 23, 357–81.Google Scholar
Augier, R., Jolivet, L. & Robin, C. 2005. Late orogenic doming in the eastern Betic Cordilleras: final exhu- mation of the Nevado-Filabride complex and its relation to basin genesis. Tectonics 24, 119.Google Scholar
Azpeitia Moros, F. 1933. Datos para el estudio paleontologico del Flysch de la Costa Cantabrica y algunos otros puntos de Espana. Boletin del Instituto Geologico y Minero de Espana 53, 165.Google Scholar
Baggley, K. A. 2000. The Late Tortonian–Early Messinian foraminiferal record of the Abad Member (Turre Formation), Sorbas Basin, Almería, South-East Spain. Palaeontology 43, 1069–112.Google Scholar
Banks, C. J. & Warburton, J. 1991. Mid-crustal detachment in the Betic system of southeast Spain. Tectonophysics 191, 275–89.Google Scholar
Bellón, A. S., Mosser, C., Roquin, C. & Pardo, E. S. 1994. Geochemical characterization of sedimentary basins by statistical analysis: the Mio-Pliocene sequences of the Vera Basin, SE Spain. Chemical Geology 116, 229–43.Google Scholar
Benson, R. H. & Bied, K. R.-E. 1991. The Messinian parastratotype at Cuevas del Almanzora, Vera Basin, SE Spain: refutation of the deep-basin, shallow-water hypothesis? Micropaleontology 37, 289302.Google Scholar
Blissett, D. J. & Pickerill, R. K. 2004. Soft-sediment ichnotaxa from the Cenozoic White Limestone Group, Jamaica, West Indies. Scripta Geologica 127, 341–78.Google Scholar
Booth-Rea, G., Azañón, J. M., Garcıá-Dueñas, V. & Augier, R. 2003. Uppermost Tortonian to Quaternary depocentre migration related with segmentation of the strike-slip Palomares Fault Zone, Vera Basin (SE Spain). Comptes Rendus Geoscience 335, 751–61.Google Scholar
Booth-Rea, G., Azañón, J.-M., Azor, A. & Garcı́a-Dueñas, V. 2004. Influence of strike-slip fault segmentation on drainage evolution and topography. A case study: the Palomares Fault Zone (southeastern Betics, Spain). Journal of Structural Geology 26, 1615–32.Google Scholar
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier, 168 pp.Google Scholar
Bourillot, R., Vennin, E., Rouchy, J.-M., Blanc-Valleron, M.-M., Caruso, A. & Durlet, C. 2010. The end of the Messinian Salinity Crisis in the western Mediterranean: insights from the carbonate platforms of south-eastern Spain. Sedimentary Geology 229, 224–53.Google Scholar
Bousquet, J. C. 1979. Quaternary strike-slip faults in southeastern Spain. Tectonophysics 52, 277–86.Google Scholar
Braga, J. C. & Martín, J. M. 2000. Subaqueous siliciclastic stromatolites: a case history from late Miocene beach deposits in the Sorbas basin of SE Spain. In Microbial Sediments (eds Riding, R. E. & Awramik, S. M.), pp. 226–32. Berlin: Springer.Google Scholar
Braga, J. C., Martín, J. M. & Quesada, C. 2003. Patterns and average rates of late Neogene–Recent uplift of the Betic Cordillera, SE Spain. Geomorphology 50, 326.Google Scholar
Braga, J. C., Martín, J. M., Riding, R., Aguirre, J., Sánchez-Almazo, I. M. & Dinarès-Turell, J. 2006. Testing models for the Messinian salinity crisis: the Messinian record in Almería, SE Spain. Sedimentary Geology 188–189, 131–54.Google Scholar
Braga, J. C., Martín, J. M. & Wood, J. L. 2001. Submarine lobes and feeder channels of redeposited, temperate carbonate and mixed siliciclastic-carbonate platform deposits (Vera Basin, Almería, southern Spain). Sedimentology 48, 99116.Google Scholar
Carter, R. M. & Lindqvist, J. K. 1975. Sealers Bay submarine fan complex, Oligocene, southern New Zealand. Sedimentology 22, 465–83.Google Scholar
Carvalho, C. N. de, Viegas, P. A. & Cachão, M. 2007. Thalassinoides and its producer: populations of Mecochirus buried within their burrow systems, Boca do Chapim Formation (Lower Cretaceous), Portugal. Palaios 22, 104–9.Google Scholar
Chamberlain, C. K. 1971. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. Journal of Paleontology 45, 212–46.Google Scholar
Cita, M. B., Schilling, A. V. & Bossio, A. 1980. Studi sul Pliocene e sugli strati di passagio dal Miocene al Pliocene, XII Stratigraphy and paleoenvironment of the Cuevas del Almanzora section (Vera Basin). A re-interpretation. Rivista Italiana di Paleontologia e Stratigrafia 1, 215–40.Google Scholar
Clauzon, G., Suc, J.-P., Popescu, S.-M., Marunteanu, M., Rubino, J.-L., Marinescu, F. & Melinte, M. C. 2005. Influence of Mediterranean sea-level changes on the Dacic Basin (Eastern Paratethys) during the late Neogene: the Mediterranean Lago Mare facies deciphered. Basin Research 17, 437–62.Google Scholar
Cloetingh, S. A. P. L. 1991. Tectonics and sea level changes: a controversy? In Controversies in Modern Geology and Tectonics (eds Müller, D. W., McKenzie, J. A. & Weissert, H.), pp. 250–77. London: Academic Press.Google Scholar
Collinson, J. D., Mountney, N. & Thompson, D. B. 2006. Sedimentary Structures. London: Terra Publishing, 292 pp.Google Scholar
Conesa, G. & Babinot, J.-F. 1999. Le messinien inférieur des marges carbonatées du bassin de Sorbas (sud-est Espagne): organisation sédimentaire, microfaunes et paléoenvironnements. Revue de Micropaléontologie 42, 255–67.Google Scholar
Crimes, T. P. 1977. Trace fossils of an Eocene deep-sea sand fan, northern Spain. In Trace Fossils 2. Geological Journal Special Issue 9 (eds Crimes, T. P. & Harper, J. C.), pp. 7190. Liverpool: Seel House Press Liverpool.Google Scholar
Crimes, T. P. & Anderson, M. M. 1985. Trace fossils from Late Precambrian–Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology 59, 310–43.Google Scholar
Crimes, T. P., Goldring, R. & Homewood, P. 1981. Trace fossil assemblages of deep-sea fan deposits, Gurnigel and Schlieren flysch (Cretaceous–Eocene), Switzerland. Eclogae Geologicae Helvetiae 74, 953.Google Scholar
Crimes, T. P. & McCall, G. 1995. A diverse ichnofauna from Eocene–Miocene rocks of the Makran Range (S.E. Iran). Ichnos 3, 231–58.Google Scholar
De Jong, K. 1990. Alpine tectonics and rotation pole evolution of Iberia. Alpine Evolution of Iberia and its Continental Margins 184, 279–96.Google Scholar
de Quatrefages, M. A. 1849. Note sur la Scolicia prisca (A. de Q.), annélide fossile de la craie. Annales des Sciences Naturelles, Zoologie, Série 3, 12, 265–6.Google Scholar
De Stefani, C. 1879. La Montagnola Senese, studio geologico. VI. Delle Eufotidi e delle altre rocce appartenenti all'Eoceno superiore. Bollettino del R. Comitato Geologico d'Italia 10, 431–60.Google Scholar
Deckker, P. de, Chivas, A. R. & Shelley, J. M. G. 1988. Paleoenvironment of the Messinian Mediterranean “Lago Mare” from strontium and magnesium in Ostracode shells. Palaios 3, 352–58.Google Scholar
Do Couto, D., Gumiaux, C., Jolivet, L., Augier, R., Lebret, N., Folcher, N., Jouannic, G., Suc, J.-P. & Gorini, C. 2015. 3D modelling of the Sorbas Basin (Spain): new constraints on the Messinian Erosional Surface morphology. Marine and Petroleum Geology 66, 101–16.Google Scholar
Do Couto, D., Popescu, S.-M., Suc, J.-P., Melinte-Dobrinescu, M. C., Barhoun, N., Gorini, C., Jolivet, L., Poort, J., Jouannic, G. & Auxietre, J.-L. 2014. Lago Mare and the Messinian Salinity Crisis: Evidence from the Alboran Sea (S. Spain). Marine and Petroleum Geology 52, 5776.Google Scholar
Egeler, C. G. & Simon, O. J. 1969. Sur la Tectonique de la Zone Bétique: (Cordillèrs Betiques, Espagne); étude basée sur les recerches dans le secteur compris entre Almeria et Vélez Rubio. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen 25, 190.Google Scholar
Eichwald, E. 1860–1868. Lethaea Rossica ou Paléontologie de la Russie. vol. 1, 1657 pp.; vol. 2, 1304 pp. (1865–1868). Stuttgart: E. Schweizerbart.Google Scholar
Ekdale, A. A. 1984. Trace fossils as indicators of sedimentological processes. In Ichnology: The Use of Trace Fossils in Sedimentology and Stratigraphy (eds Ekdale, A. A., Bromley, R. G. & Pemberton, S. G.), pp. 8896. The Society of Economic Paleontologists and Mineralogists.Google Scholar
Ernst, G. & Zander, J. 1993. Stratigraphy, facies development, and trace fossils of the Upper Cretaceous of southern Tanzania (Kilwa District). In Geology and Mineral Resources of Somalia and Surrounding Regions (eds Abbate, E., Sagri, M. & Sassi, F. P.), pp. 259–78. Istituto Agronomico per l'Oltremare, Relazioni e Monografie agrarie subtropicali e tropicali, new series no. 113.Google Scholar
Faulkner, D., Lewis, A. & Rutter, E. 2003. On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics 367, 235–51.Google Scholar
Fernández-Fernández, E. M., Jabaloy-Sánchez, A., Nieto, F. & González-Lodeiro, F. 2007. Structure of the Maláguide Complex near Vélez Rubio (Eastern Betic Cordillera, SE Spain). Tectonics 26, 121.Google Scholar
Fillion, D. & Pickerill, R. K. 1984. Systematic ichnology of the Middle Ordovician Trenton Group, St Lawrence Lowland, eastern Canada. Maritime Sediments and Atlantic Geology 20, 14.Google Scholar
Flecker, R., Krijgsman, W., Capella, W., Castro Martíns, C. de, Dmitrieva, E., Mayser, J. P., Marzocchi, A., Modestou, S., Ochoa, D., Simon, D., Tulbure, M., van den Berg, B., van der Schee, M., Lange, G. de, Ellam, R., Govers, R., Gutjahr, M., Hilgen, F., Kouwenhoven, T., Lofi, J., Meijer, P., Sierro, F. J., Bachiri, N., Barhoun, N., Alami, A. C., Chacon, B., Flores, J. A., Gregory, J., Howard, J., Lunt, D., Ochoa, M., Pancost, R., Vincent, S. & Yousfi, M. Z. 2015. Evolution of the Late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change. Earth-Science Reviews 150, 365–92.Google Scholar
Fortuin, A. R., Kelling, J. M. D. & Roep, T. B. 1995. The enigmatic Messinian–Pliocene section of Cuevas del Almanzora (Vera Basin, SE Spain) revisited—erosional features and strontium isotope ages. Sedimentary Geology 97, 177201.Google Scholar
Fortuin, A. R. & Krijgsman, W. 2003. The Messinian of the Nijar Basin (SE Spain): sedimentation, depositional environments and paleogeographic evolution. Sedimentary Geology 160, 213–42.Google Scholar
Fujioka, K., Taira, A., Kobayashi, K., Nakamura, K., Ilyama, T., Cadet, J.-P., Lallemand, S. & Girard, D. 1987. 6000 Meters Deep: A Trip to the Japanese Trenches. Univ. Tokyo Press, IFREMER and CNRS, 104 pp.Google Scholar
Fuchs, T. 1895. Studien über Fucoiden und Hieroglyphen. Akademie der Wissenschaften zu Wien, mathematisch-naturwissenschaftliche Klasse, Denkschriften 62, 369448.Google Scholar
Fürsich, F. T., Taheri, J. & Wilmsen, M. 2007. New occurrences of the trace fossil Paleodictyon in shallow marine environments: examples from the Triassic–Jurassic of Iran. Palaios 22, 408–16.Google Scholar
García-Hernández, M., López-Garrido, A. C., Rivas, P., Sanz de Galdeano, C. & Vera, J. A. 1980. Mesozoic palaeogeographic evolution of the External Zones of the Betic Cordillera. Geologie en Mijnbouw 59, 155–68.Google Scholar
Giaconia, F., Booth-Rea, G., Martínez-Martínez, J. M., Azañón, J. M., Storti, F. & Artoni, A. 2014. Heterogeneous extension and the role of transfer faults in the development of the southeastern Betic basins (SE Spain). Tectonics 33, 2467–89.Google Scholar
Gierlowski-Kordesch, E. & Ernst, G. 1987. A flysch trace fossil assemblage from the Upper Cretaceous shelf of Tanzania. In Current Research in African Earth Sciences: Extended Abstracts, 14th Colloquium on African Geology Berlin (West), August 18–22, 1987 (eds Matheis, G. & Schandelmeier, H.), pp. 217–21. Rotterdam: A. A. Balkema.Google Scholar
Gonzalez Donoso, J. M. & Serrano, F. 1978. Precisiones sobre la bioestratigrafia del corte de Cuevas de Almanzora. Cuadernos de Geología 8–9, 241–52.Google Scholar
Hall, J. 1847. Palaeontology of New York. Volume 1. Albany: C. Van Benthuysen, 362 pp.Google Scholar
Han, Y. & Pickerill, R. K. 1994. Phycodes templus isp. nov. from the Lower Devonian of northwestern New Brunswick, eastern Canada. Atlantic Geology 30, 3746.Google Scholar
Han, Y. & Pickerill, R. K. 1995. Taxonomic review of the ichnogenus Helminthopsis Heer 1877 with a statistical analysis of selected ichnospecies. Ichnos 4, 83118.Google Scholar
Hantzpergue, P. & Branger, P. 1992. L'ichnogenre Paleodictyon dans les dépôts néritiques de l'Oxfordien supérieur nord-aquitain (France). Geobios 25, 195205.Google Scholar
Häntzschel, W. 1975. Trace fossils and problematica. In Treatise on Invertebrate Paleontology: Prepared Under Sponsorship of the Geological Society of America. Miscellanea. Trace Fossils and Problematica. Part W. Supplement 1 (ed. Teichert, C.). Geological Society of America.Google Scholar
Heard, T. G. & Pickering, K. T. 2008. Trace fossils as diagnostic indicators of deep-marine environments, Middle Eocene Ainsa-Jaca basin, Spanish Pyrenees. Sedimentology 55, 809–44.Google Scholar
Heer, O. 1865. Die Urwelt der Schweiz. Zurich, 622 pp.Google Scholar
Heer, O. 1877. Flora Fossilis Helvetiae. Die vorweltliche Flora der Schweiz. Zurich: Verlag J. Wurster and Co, 182 pp.Google Scholar
Huibregtse, P., van Alebeek, H., Zaal, M. & Biermann, C. 1998. Palaeostress analysis of the northern Nijar and southern Vera basins: constraints for the Neogene displacement history of major strike-slip faults in the Betic Cordilleras, SE Spain. Tectonophysics 300, 79101.Google Scholar
Jabaloy-Sánchez, A., Fernández-Fernández, E. M. & González-Lodeiro, F. 2007. A cross section of the eastern Betic Cordillera (SE Spain) according field data and a seismic reflection profile. Tectonophysics 433, 97126.Google Scholar
James, N. P. & Bone, Y. 2010. Neritic Carbonate Sediments in a Temperate Realm: Southern Australia. Dordrecht: Springer Science+Business Media, 252 pp.Google Scholar
Jonk, R. & Biermann, C. 2002. Deformation in Neogene sediments of the Sorbas and Vera Basins (SE Spain): constraints on simple-shear deformation and rigid body rotation along major strike-slip faults. Journal of Structural Geology 24, 963–77.Google Scholar
Knaust, D. 2009. Characterisation of a Campanian deep-sea fan system in the Norwegian Sea by means of ichnofabrics. Marine and Petroleum Geology 26, 1199–211.Google Scholar
Knaust, D. 2012. Trace-fossil systematics. In Trace Fossils as Indicators of Sedimentary Environments (eds Knaust, D. & Bromley, R. G.), pp. 79101. Amsterdam: Elsevier.Google Scholar
Krijgsman, W., Fortuin, A. R., Hilgen, F. J. & Sierro, F. J. 2001. Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity. Sedimentary Geology 140, 4360.Google Scholar
Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J. & Wilson, D. S. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400, 652–55.Google Scholar
Krijgsman, W., Leewis, M. E., Garcés, M., Kouwenhoven, T. J., Kuiper, K. F. & Sierro, F. J. 2006. Tectonic control for evaporite formation in the Eastern Betics (Tortonian; Spain). Sedimentary Geology 188, 155–70.Google Scholar
Książkiewicz, M. 1968. On some problematic organic traces from the flysch of the Polish Carpathians (Part 3). Rocznik Polskiego Towarzystwa Geologicznego 38, 317.Google Scholar
Książkiewicz, M. 1970. Observations on the ichnofauna of the Polish Carpathians. In Trace Fossils (eds Crimes, T. P. & Harper, J. C.), pp. 283322. Geological Journal, Special Issue no. 3.Google Scholar
Książkiewicz, M. 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeontologia Polonica 36, 5208.Google Scholar
Leszczyński, S. & Seilacher, A. 1991. Ichnocoenoses of a turbidite sole. Ichnos 1, 293303.Google Scholar
MacEachern, J. A., Bann, K. L., Gingras, M. K., Zonneveld, J.-P., Dashtgard, S. E. & Pemberton, S. G. 2012. The ichnofacies paradigm. In Trace Fossils as Indicators of Sedimentary Environments (eds Knaust, D. & Bromley, R. G.), pp. 103–38. Amsterdam: Elsevier.Google Scholar
Macsotay, O. 1967. Huellas problematicas y su valor paleoecologico en Venezuela. Geos 16, 779.Google Scholar
Mancilla, F. d. L., Booth-Rea, G., Stich, D., Pérez-Peña, J. V., Morales, J., Azañón, J. M., Martin, R. & Giaconia, F. 2015. Slab rupture and delamination under the Betics and Rif constrained from receiver functions. Special Issue on Iberia Geodynamics: An Integrative Approach from the Topo-Iberia Framework 663, 225–37.Google Scholar
Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M. & Sierro, F. J. 2013. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25, 315–22.Google Scholar
Martin, J. & Braga, J. C. 1996. Tectonic signals in the Messinian stratigraphy of the Sorbas basin (Almeria, SE Spain). In Tertiary Basins of Spain (eds Friend, P. F. & Dabrio, C. J.), pp. 387–91. Cambridge: Cambridge University Press.Google Scholar
Martín, J. M., Braga, J. C., Betzler, C. & Brachert, T. 1996. Sedimentary model and high-frequency cyclicity in a Mediterranean, shallow-shelf, temperate-carbonate environment (uppermost Miocene, Agua Amarga Basin, Southern Spain). Sedimentology 43, 263–77.Google Scholar
Martín, J. M., Braga, J. C. & Riding, R. 1997. Late Miocene Halimeda alga-microbial segment reefs in the marginal Mediterranean Sorbas Basin, Spain. Sedimentology 44, 441–56.Google Scholar
Martín, J. M., Braga, J. C., Sánchez-Almazo, I. M. & Aguirre, J. 2012. Temperate and tropical carbonate sedimentation episodes in the Neogene Betic basins (southern Spain) linked to climatic oscillations and changes in Atlantic–Mediterranean connections: constraints from isotopic data. In Carbonate Systems during the Oligocene–Miocene Climatic Transition (eds Mutti, M., Piller, W. & Betzler, C.), pp. 4969. Oxford: Wiley-Blackwell.Google Scholar
Martínez-Díaz, J. J. & Hernández-Enrile, J. L. 2004. Neotectonics and morphotectonics of the southern Almería region (Betic Cordillera-Spain) kinematic implications. International Journal of Earth Sciences 93, 189206.Google Scholar
Marzocchi, A., Flecker, R., van Baak, C. G., Lunt, D. J. & Krijgsman, W. 2016. Mediterranean outflow pump: an alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis. Geology, G37646.1, published online 1 June 2016. doi: 10.1130/G37646.1.Google Scholar
McCann, T. 1989. The ichnogenus Desmograpton from the Silurian of Wales—first record from the Paleozoic. Journal of Paleontology 63, 950–53.Google Scholar
McCann, T. 1993. A Nereites ichnofacies from the Ordovician–Silurian Welsh Basin. Ichnos 3, 3956.Google Scholar
McCann, T. & Manchego, M. V. 2015. Geologie im Gelände: Das Outdoor-Handbuch. Berlin: Springer-Verlag, 376 pp.Google Scholar
Moernaut, J., van Daele, M., Heirman, K., Fontijn, K., Strasser, M., Pino, M., Urrutia, R. & Batist, M. D. 2014. Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in south central Chile. Journal of Geophysical Research: Solid Earth 119, 1607–33.Google Scholar
Monaco, P. 2008. Taphonomic features of Paleodictyon and other graphoglyptid trace fossils in Oligo-Miocene thin-bedded turbidites, Northern Apennines, Italy. Palaios 23, 667–82.Google Scholar
Montenat, C., Bizon, G., Bizon, J.-J., Carbonnel, G., Muller, C. & Reneville, P. de. 1976. Continuité ou discontinuité de sémentation marine mio-pliocène en Méditerranée occidentale. L'example du bassin de vera (Espagne méridionale). Revue de l'Institut Francais du Pétrole 31, 613–64.Google Scholar
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A. & Ulloa, O. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience 6, 701–10.Google Scholar
Mulder, T. & Alexander, J. 2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269–99.Google Scholar
Orszag-Sperber, F. 2006. Changing perspectives in the concept of “Lago-Mare” in Mediterranean Late Miocene evolution. Sedimentary Geology 188–189, 259–77.Google Scholar
Pedrera, A., Pérez-Peña, J. V., Galindo-Zaldívar, J., Azañón, J. M. & Azor, A. 2009. Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain). Geomorphology 105, 218–31.Google Scholar
Pemberton, S. G. & Frey, R. W. 1982. Trace fossil nomenclature and the PlanolitesPalaeophycus dilemma. Journal of Paleontology 56, 843–81.Google Scholar
Peruzzi, D. G. 1880. Osservazioni sui generi Paleodictyon e Paleomeandron dei terreni cretacei ed eocenici dell'Appennino sett. e centrale. Attii della Società Toscana di Scienze Naturali Residente in Pisa, Memorie 5, 18.Google Scholar
Pickerill, R. K. 1982. Glockerichnus, a new name for the trace fossil ichnogenus Glockeria Ksiazkiewicz, 1968. Journal of Paleontology 56, 816.Google Scholar
Pickering, K. & Hiscott, R. 2015. Deep Marine Systems: Processes, Deposits, Environments, Tectonic and Sedimentation. Chichester: John Wiley & Sons, 672 pp.Google Scholar
Pickering, K., Stow, D., Watson, M. & Hiscott, R. 1986. Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments. Earth-Science Reviews 23, 75174.Google Scholar
Puga-Bernabéu, Á., Martín, J. M., Braga, J. C. & Aguirre, J. 2014. Offshore remobilization processes and deposits in low-energy temperate-water carbonate-ramp systems: examples from the Neogene basins of the Betic Cordillera (SE Spain). Sedimentary Geology 304, 1127.Google Scholar
Reicherter, K. R. & Peters, G. 2005. Neotectonic evolution of the Central Betic Cordilleras (Southern Spain). Tectonophysics 405, 191212.Google Scholar
Richards, M., Bowman, M. & Reading, H. 1998. Submarine-fan systems I: characterization and stratigraphic prediction. Marine and Petroleum Geology 15, 689717.Google Scholar
Richter, R. 1850. Aus der thüringischen Grauwacke. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 2, 198206.Google Scholar
Riding, R., Braga, J. C., Martín, J. M. & Sánchez-Almazo, I. M. 1998. Mediterranean Messinian Salinity Crisis: constraints from a coeval marginal basin, Sorbas, southeastern Spain. Marine Geology 146, 120.Google Scholar
Rieth, A. 1932. Neue Funde spongeliomorpher Fucoiden aus Jura Schwabens. Geologische und Palaeontolgische Abhandlungen 19, 257–94.Google Scholar
Rouchy, J.-M. & Caruso, A. 2006. The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sedimentary Geology 188, 3567.Google Scholar
Rouchy, J.-M. & Martin, J.-P. S. 1992. Late Miocene events in the Mediterranean as recorded by carbonate-evaporite relations. Geology 20, 629–32.Google Scholar
Rouchy, J.-M., Orszag-Sperber, F., Blanc-Valleron, M.-M., Pierre, C., Rivière, M., Combourieu-Nebout, N. & Panayides, I. 2001. Paleoenvironmental changes at the Messinian–Pliocene boundary in the eastern Mediterranean (southern Cyprus basins): significance of the Messinian Lago-Mare. Sedimentary Geology 145, 93117.Google Scholar
Roveri, M., Lugli, S., Manzi, V., Gennari, R. & Schreiber, B. C. 2014. High-resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: implications for marginal to central basins correlation. Marine Geology 349, 113–25.Google Scholar
Sacco, F. 1888. Note di paleoicnologia italiana. Atti Societa Italiana Scienze Naturali 31, 151–92.Google Scholar
Sanz de Galdeano, C. 1987. Strike-slip faults in the Southern border of the Vera Basin (Almeria, Betic Cordilleras). Estudios Geológicos 43, 435–43.Google Scholar
Sanz de Galdeano, C. & Vera, J. A. 1992. Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Research 4, 2136.Google Scholar
Saporta, L. C. J. G. de. 1872–1873. Paléontologie francaise ou description des fossiles de la France (commencée par Alcide d'Orbigny et continuée par une réunion de paléontologistes sous la direction d'un comité special). Série 2. Végétaux. Plantes Jurassiques 1–10, Paris: G. Masson, 506 pp.Google Scholar
Savi, P. & Meneghini, G. G. 1851. Osservazioni stratigrafiche e paleontologiche concernanti la geologia della Toscana e dei paesi limitrofi. (Appendix to Murchison: Memoria sulla Strutttura Geologica delle Alpi). Firenze: Stamperia granducale, 246 pp.Google Scholar
Schafhäutl, K. E. 1851. Geognostische Untersuchungen der Bayerischen Lande: Geognostische Untersuchungen des südbayerischen Alpengebirges. Literarisch-artistische Anstalt.Google Scholar
Seilacher, A. 1964. Sedimentological classification and nomenclature of trace fossils. Sedimentology 3, 253–56.Google Scholar
Seilacher, A. 1977. Pattern analysis of Paleodictyon and related trace fossils. In Trace Fossils 2. Geological Journal Special Issue 9 (eds Crimes, T. P. & Harper, J. C.), pp. 289–34. Liverpool: Seel House Press Liverpool.Google Scholar
Seilacher, A. 1986. Evolution of behavior as expressed in marine trace fossils. In Evolution of Animal Behavior: Paleontological and Field Approaches (eds Nitecki, M. H. & Kitchell, J. A.), pp. 6287. New York: Oxford University Press.Google Scholar
Seilacher, A. 2007. Trace Fossil Analysis. Dordrecht: Springer Science+Business Media, 225 pp.Google Scholar
Sierro, F. J., Flores, J. A., Zamarreño, I., Vázquez, A., Utrilla, R., Francés, G., Hilgen, F. & Krijgsman, W. 1999. Messinian pre-evaporite sapropels and precession-induced oscillations in western Mediterranean climate. Marine Geology 153, 137–46.Google Scholar
Sierro, F. J., Hilgen, F. J., Krijgsman, W. & Flores, J. A. 2001. The Abad composite (SE Spain): a Messinian reference section for the Mediterranean and the APTS. Palaeogeography, Palaeoclimatology, Palaeoecology 168, 141–69.Google Scholar
Soria, J., Fernández, J. & Viseras, C. 1999. Late Miocene stratigraphy and palaeogeographic evolution of the intramontane Guadix Basin (Central Betic Cordillera, Spain): implications for an Atlantic–Mediterranean connection. Palaeogeography, Palaeoclimatology, Palaeoecology 151, 255–66.Google Scholar
Stanley, D. C. & Pickerill, R. K. 1993. Shallow marine Paleodictyon from the Upper Ordovician Georgian Bay Formation of southern Ontario. Atlantic Geology 29, 115–19.Google Scholar
Stelting, C. E., Bouma, A. H. & Stone, C. G. 2000. Chapter 1: Fine-grained turbidite systems: overview. In Fine-Grained Turbidite Systems (eds Bouma, A. H. & Stone, C. G.), pp. 17. AAPG and SEPM, American Association of Petroleum Geologists Memoir 72 and SEPM Special Publication no. 68.Google Scholar
Stoica, M., Krijgsman, W., Fortuin, A. & Gliozzi, E. 2016. Paratethyan ostracods in the Spanish Lago-Mare: more evidence for interbasinal exchange at high Mediterranean sea level. Palaeogeography, Palaeoclimatology, Palaeoecology 441, 854–70.Google Scholar
Stokes, M. 2008. Plio-Pleistocene drainage development in an inverted sedimentary basin: Vera basin, Betic Cordillera, SE Spain. Geomorphology 100, 193211.Google Scholar
Stokes, M. & Mather, A. E. 2000. Response of Plio-Pleistocene alluvial systems to tectonically induced base-level changes, Vera Basin, SE Spain. Journal of the Geological Society, London 157, 303–16.Google Scholar
Talling, P. J., Masson, D. G., Sumner, E. J. & Malgesini, G. 2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology 59, 19372003.Google Scholar
Thibodeau, B., Lehmann, M. F., Kowarzyk, J., Mucci, A., Gélinas, Y., Gilbert, D., Maranger, R. & Alkhatib, M. 2010. Benthic nutrient fluxes along the Laurentian Channel: impacts on the N budget of the St. Lawrence marine system. Estuarine, Coastal and Shelf Science 90, 195205.Google Scholar
Uchman, A. 1995. Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15, 1115.Google Scholar
Uchman, A. 1998. Taxonomy and ethology of flysch trace fossils: revision of the Marian Ksiazkiewicz collection and studies of complementary material. Annales Societatis Geologorum Poloniae 68, 105218.Google Scholar
Uchman, A. 2001. Eocene flysch trace fossils from the Hecho Group of the Pyrenees, northern Spain. Beringeria 28, 341.Google Scholar
Uchman, A. 2007. Deep-sea ichnology: development of major concepts. In Trace Fossils: Concepts, Problems, Prospects (ed. Miller III, W.), pp. 248–67. Amsterdam: Elsevier.Google Scholar
Uchman, A., Janbu, N. E. & Nemec, W. 2004. Trace fossils in the Cretaceous–Eocene flysch of the Sinop-Boyabat Basin, Central Pontides, Turkey. Annales Societatis Geologorum Poloniae 74, 197235.Google Scholar
Uchman, A. & Wetzel, A. 2012. Deep-sea fans. In Trace Fossils as Indicators of Sedimentary Environments (eds Knaust, D. & Bromley, R. G.), pp. 643–71. Amsterdam: Elsevier.Google Scholar
van der Marck, W. 1863. Neue Beiträge zur Kenntnis der fossilen Fische und anderer Thierreste aus der jüngsten Kreide Westfalens, sowie Aufzählung sämtlicher seither in der westfälischen Kreide aufgefundenen Fischreste. Palaeontographica 22, 5574.Google Scholar
Vergés, J., Fernàndez, M. & Martínez, A. 2002. The Pyrenean orogen: pre-, syn-, and post-collisional evolution. Journal of the Virtual Explorer 8, 5776.Google Scholar
Vialov, O. S. 1971. Rare Mesozoic problematica from the Pamir and Caucasus. Paleontologicheskiy Sbornik 7, 8593.Google Scholar
Völk, H. R. & Rondeel, H. E. 1964. Zur Gliederung des Jungtertiärs im Becken von Vera, Südost-Spanien. Geologie en Mijnbouw 43, 310–15.Google Scholar
Warny, S. A., Bart, P. J. & Suc, J.-P. 2003. Timing and progression of climatic, tectonic and glacioeustatic influences on the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 202, 5966.Google Scholar
Weber, B., Hu, S. X., Steiner, M. & Zhao, F. C. 2012. A diverse ichnofauna from the Cambrian Stage 4 Wulongqing Formation near Kunming (Yunnan Province, South China). Bulletin of Geosciences 87, 7192.Google Scholar
Weijermars, R. 1987a. A revision of the Eurasian-African plate boundary in the western Mediterranean. Geologische Rundschau 76, 667–76.Google Scholar
Weijermars, R. 1987b. The Palomares brittle–ductile Shear Zone of southern Spain. Journal of Structural Geology 9, 139–57.Google Scholar
Weijermars, R. 1991. Geology and tectonics of the Betic Zone, SE Spain. Earth-Science Reviews 31, 153236.Google Scholar
Wentworth, C. K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30, 377–92.Google Scholar
Wetzel, A. 2000. Giant Paleodictyon in Eocene flysch. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 171–78.Google Scholar
Wetzel, A. & Uchman, A. 1997. Ichnology of deep-sea fan overbank deposits of the Ganei slates (Eocene, Switzerland)—a classical flysch trace fossil locality studied first by Oswald Heer. Ichnos 5, 139–62.Google Scholar
Wetzel, A. & Uchman, A. 1998. Deep-sea benthic food content recorded by ichnofabrics; a conceptual model based on observations from Paleogene flysch, Carpathians, Poland. Palaios 13, 533–46.Google Scholar