Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T08:21:03.809Z Has data issue: false hasContentIssue false

Tectonostratigraphy and provenance analysis to define the edge and evolution of the eastern Wuyi-Yunkai orogen, South China

Published online by Cambridge University Press:  02 October 2017

WEIHUA YAO*
Affiliation:
Earth Dynamics Research Group, ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, Perth 6845, Australia
ZHENG-XIANG LI
Affiliation:
Earth Dynamics Research Group, ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, Perth 6845, Australia
*
*Author for correspondence: weihua.yao@curtin.edu.au

Abstract

We report three Palaeozoic sedimentary successions in northeastern South China that display markedly different tectonostratigraphic characteristics: the Jiangshan section exhibits an angular unconformity between the Upper Ordovician and Carboniferous stratra; the Shuangming section exhibits a disconformity between the lower Silurian and Upper Devonian strata; and the Xinqiao section exhibits a disconformity between the upper Silurian and Upper Devonian strata. The Shuangming and Xinqiao sections are interpreted to represent the remnant Nanhua foreland basin, whereas the Jiangshan section is in the fold-and-thrust zone of the Wuyi-Yunkai orogen. The Lizhu-Changshan thrust fault in between is interpreted to be the frontal thrust and the boundary of the orogen. Detrital provenance analysis of the Ordovician–Devonian sandstones from the Shuangming and Xinqiao sections shows that the Ordovician–Silurian, mid- to late-orogenic sandstones contain dominantly 860–780 Ma zircon populations and subordinate 2.5 Ga, 1.89–1.78 Ga, 980–950 Ma, 630–540 Ma and 430 Ma populations, indicating nearby sources including the early Neoproterozoic Sibao orogen, inverted Neoproterozoic rift basins and related plutons, recycled Ediacaran–Cambrian strata and, increasing with time, exposed Cathaysia basement and minor syn- to late-orogenic plutonic intrusions. The Devonian post-orogenic sandstones exhibit a dominant 440 Ma population with minor 2.5 Ga, 1.89–1.78 Ga, 860–780 Ma and 630–540 Ma populations, suggesting a dominant contribution from now widely exposed, mid- to late-orogenic plutonic intrusions (with or without contributions from rare volcanism of similar ages) in a residual topographic high SE of the Lizhu-Changshan fault. This residual topographic high of the Wuyi-Yunkai orogen had completely perished by early Carboniferous time, c. 60Myr after the end of the orogenic event.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amelin, Y., Lee, D. C., Halliday, A. N. & Pidgeon, R. T. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–5.Google Scholar
Anderson, T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.Google Scholar
Berry, R. F., Jenner, G. A., Meffre, S. & Tubrett, M. N. 2001. A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania? Earth and Planetary Science Letters 192, 207–22.Google Scholar
BGMRGD (Bureau of Geology and Mineral Resources of Guangdong Province). 1988. Regional Geology of the Guangdong Province. Beijing: Geological Publishing House, 971 pp. (in Chinese with English abstract).Google Scholar
BGMRGX (Bureau of Geology and Mineral Resources of Guangxi Province). 1985. Regional Geology of the Guangxi Province. Beijing: Geological Publishing House, 853 pp. (in Chinese with English abstract).Google Scholar
BGMRHN (Bureau of Geology and Mineral Resources of Hunan Province). 1988. Regional Geology of the Hunan Province. Beijing: Geological Publishing House, 719 pp. (in Chinese with English abstract).Google Scholar
BGMRJX (Bureau of Geology and Mineral Resources of Jiangxi Province). 1984. Regional Geology of the Jiangxi Province. Beijing: Geological Publishing House, 921 pp. (in Chinese with English abstract).Google Scholar
BGMRZJ (Bureau of Geology and Mineral Resources of Zhejiang Province). 1989. Regional Geology of the Zhejiang Province. Beijing: Geological Publishing House, 688 pp. (in Chinese with English abstract).Google Scholar
Blichert-Toft, J. & Albarede, F. 1997. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–58.Google Scholar
Charvet, J., Shu, L. S., Faure, M., Choulet, F., Wang, B., Lu, H. F. & Breton, N. L. 2010. Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen. Journal of Asian Earth Sciences 39, 309–30.Google Scholar
DeCelles, P. G. & Giles, K. A. 1996. Foreland basin systems. Basin Research 8, 105–23.Google Scholar
Dhuime, B., Hawkesworth, C. & Cawood, P. 2011. When continents formed. Science 331, 154–5.Google Scholar
Greentree, M. R., Li, Z. X., Li, X. H. & Wu, H. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research 151, 79100.Google Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Achterbergh, E. V., O'Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.Google Scholar
Haq, B. U. & Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science 322, 64–8.Google Scholar
Huang, J., Ren, J., Jiang, C., Zhang, Z. & Qin, D. 1980. The geotectonic evolution of China. Beijing: Science Press, 124 pp. (in Chinese with English abstract).Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Kolmogorov, A. N. 1933. Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari 4, 8391.Google Scholar
Li, W. X., Li, X. H. & Li, Z. X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research 136, 5166.Google Scholar
Li, X. H. 1999. U–Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly. Precambrian Research 97, 4357.Google Scholar
Li, X. H., Li, W. X., Li, Z. X., Lo, C. H., Wang, J., Ye, M. F. & Yang, Y. H. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research 174, 117–28.Google Scholar
Li, X. H., Li, Z. X., Ge, W. C., Zhou, H. W., Li, W. X., Liu, Y. & Wingate, M. T. D. 2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research 122, 4583.Google Scholar
Li, Z. X. 1998. Tectonic history of the major East Asian lithospheric blocks since the mid- Proterozoic – a synthesis. In Mantle Dynamics and Plate Interactions in East Asia (ed. Flower, M. F. J.), pp. 221–43. Washington, DC: American Geophysical Union, Geodynamics Series, vol. 27.Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., Dewaele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodina: a synthesis. Precambrian Research 160, 179210.Google Scholar
Li, Z. X., Chen, H. L., Li, X. H. & Zhang, F. Q. 2014. Tectonics of the South China Block – Interpreting the Rock Record. Beijing: Science Press, 144 pp.Google Scholar
Li, Z. X., Li, X. H., Kinny, P. D. & Wang, J. 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters 173, 171–81.Google Scholar
Li, Z. X., Li, X. H., Kinny, P. D., Wang, J., Zhang, S. & Zhou, H. 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.Google Scholar
Li, Z. X., Li, X. H., Wartho, J. A., Clark, C., Li, W. X., Zhang, C. L. & Bao, C. M. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure–temperature conditions. Geological Society of America Bulletin 122, 772–93.Google Scholar
Li, Z. X., Li, X. H., Zhou, H. & Kinny, P. D. 2002. Grenvillian continental collision in south China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.Google Scholar
Liu, B. & Xu, X. 1994. Atlas of Lithofacies and Paleogeography of South China. Beijing: Science Press, 188 pp. (in Chinese with English Abstract).Google Scholar
Ludwig, K. R. 2001. Isoplot/Ex version 2.49 – A geochronological toolkit for Microsoft excel. Berkeley Geochronological Centre Special Publication No. 1, 56 pp.Google Scholar
Moores, E. M. & Twiss, R. J. 1995. Tectonics. New York: WH Freeman, 415 pp.Google Scholar
Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., Miller, J. S. & Vroon, P. Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology 255, 231–35.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986. Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press, 186 pp.Google Scholar
Ren, J. 1964. A preliminary study on pre-Devonian geotectonic problems of southeastern China. Acta Geologica Sinica 44, 418–31.Google Scholar
Ren, J. 1991. On the geotectonics of southern China. Acta Geologica Sinica 4, 111–30.Google Scholar
RGMRZJ-a. 1966. Regional Geological Mapping and Report of Zhejiang Province–1:200,000 Jinhua Sheet. Beijing: Institute of Geoscience, Ministry of Geology (in Chinese).Google Scholar
RGMRZJ-b. 1970. Regional Geological Mapping and Report of Zhejiang Province–1:200,000 Quxian Sheet. Beijing: Institute of Geoscience, Ministry of Geology (in Chinese).Google Scholar
Rong, J. Y., Zhang, R. B., Xu, H. G., Huang, B. & Yu, G. H. 2010. Expansion of the Cathaysian Oldland through the Ordovician-Silurian transition: emerging evidence and possible dynamics. Science in China (Earth Sciences) 53, 117.Google Scholar
Shu, L. S., Faure, M., Yu, J. H. & Jahn, B. M. 2011. Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research 187, 263–76.Google Scholar
Smirnov, N. V. 1944. Approximate laws of distribution of randomvariables from empirical data. Uspekhi Matematicheskikh Nauk 10, 179206 (in Russian).Google Scholar
Soderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.Google Scholar
Van Achterbergh, E., Ryan, C. G., Jackson, S. E. & Griffin, W. L. 2001. Data reduction software for LA-ICP-MS: appendix. In Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications (ed. Sylvester, P. J.), pp. 239–43. Mineralogist Association Canada (MAC), Ottawa, Short Course Series 29.Google Scholar
Wan, Y., Liu, D., Wilde, S. A., Cao, J., Chen, B., Dong, C., Song, B. & Du, L. 2010. Evolution of the Yunkai Terrane, South China: evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences 37, 140–53.Google Scholar
Wang, X. L., Zhou, J. C., Griffin, W. L., Wang, R. C., Qiu, J. S., O'Reilly, S. Y., Xu, X., Liu, X. M. & Zhang, G. L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research 159, 117–31.Google Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S., Zhang, W. L., Liu, X. M. & Zhang, G. L. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: implications for tectonic evolution. Precambrian Research 145, 111–30.Google Scholar
Wang, Y., Fan, W., Zhao, G., Ji, S. & Peng, T. 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research 12, 404–16.Google Scholar
Wang, Y., Zhang, A., Fan, W., Zhang, Y. & Zhang, Y. 2013. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: Geochronological and geochemical evidence. Lithos 160–1, 3754.Google Scholar
Wang, Y., Zhang, F., Fan, W., Zhang, G., Chen, S., Cawood, P. A. & Zhang, A. 2010. Tectonic setting of the South China Block in the early Paleozoic: resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics 29, https://doi.org/10.1029/2010TC002750.Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meer, M., Oberli, F., Vonquadt, A., Roddick, J. C. & Spegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analysis. Geostandards and Geoanalytical Research 19, 123.Google Scholar
Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J. P., Greenwood, R. C., Hinton, R., Kita, N., Mason, P. R. D., Norman, M., Ogasawara, M., Piccoli, P. M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Spicuzza, M. J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q. & Zheng, Y. F. 2004. Further characterisation of the 91500 zircon crystal. Geostandards Newsletter 28, 939.Google Scholar
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology 234, 105–26.Google Scholar
Wu, R. X., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Zhang, S. B., Liu, X. & Wu, F. Y. 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research 146, 179212.Google Scholar
Xie, L. W., Zhang, Y. B., Zhang, H. H., Sun, J. F. & Wu, F. W. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu–Hf isotopes in zircon and baddeleyite. Chinese Science Bulletin 53, 1565–73.Google Scholar
Xu, Y., Du, Y., Cawood, P. A., Zhu, Y., Li, W. & Yu, W. 2012. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: response to orogenesis in South China. Sedimentary Geology 267–8, 6372.Google Scholar
Yang, Z., Cheng, Y. Q. & Wang, H. C. 1986. The Geology of China. Oxford: Clarendon Press, 276 pp.Google Scholar
Yao, W. H. & Li, Z. X. 2016. Tectonostratigraphic history of the Ediacaran–Silurian Nanhua foreland basin in South China. Tectonophysics 674, 3151.Google Scholar
Yao, W. H., Li, Z. X., Li, W. X., Li, X. H. & Yang, J. H. 2014. From Rodinia to Gondwanaland: a tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China. American Journal of Science 314, 278313.Google Scholar
Yao, W. H., Li, Z. X., Li, W. X., Su, L. & Yang, J. H. 2015. Detrital provenance evolution of the Ediacaran–Silurian Nanhua foreland basin, South China. Gondwana Research 28, 1449–65.Google Scholar
Yao, W. H., Li, Z. X., Li, W. X., Wang, X. C., Li, X. H. & Yang, J. H. 2012. Post-kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China: evidence from ca. 435 Ma high-Mg basalts. Lithos 154, 115–29.Google Scholar
Yu, J. H., O'Reilly, S. Y., Wang, L., Griffin, W. L., Zhang, M., Wang, R., Jiang, S. & Shu, L. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research 164, 115.Google Scholar
Yu, J. H., O'Reilly, S. Y., Wang, L., Griffin, W. L., Zhou, M. F., Zhang, M. & Shu, L. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research 181, 97114.Google Scholar
Yu, Y., Huang, X. L., He, P. L. & Li, J. 2016. I-type granitoids associated with the early Paleozoic intracontinental orogenic collapse along pre-existing block boundary in South China. Lithos 248–51, 353–65.Google Scholar
Zhao, G. & Cawood, P. A. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: implications for Neoproterozoic collision-related assembly of the South China Craton. American Journal of Science 299, 309–39.Google Scholar
Zhou, M. F., Ma, Y., Yan, D. P., Xia, X., Zhao, J. H. & Sun, M. 2006. The Yanbian Terrane (Southern Sichuan Province, SW China): a Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Research 144, 1938.Google Scholar
Zhou, M. F., Yan, D. P., Kennedy, A. K., Li, Y. & Ding, J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters 196, 5167.Google Scholar
Supplementary material: File

Yao and Li supplementary material 1

Supplementary Table

Download Yao and Li supplementary material 1(File)
File 1.8 MB
Supplementary material: File

Yao and Li supplementary material 2

Supplementary Table

Download Yao and Li supplementary material 2(File)
File 2 MB