Article contents
An operator satisfying Dunford's condition (C) but without bishop's property (β)
Published online by Cambridge University Press: 18 May 2009
Extract
For X a complex Banach space and U an open subset of the complex plane С, let O (U, X) denote the space of analytic X- valued functions defined on U. This is a Frechet space when endowed with the topology of uniform convergence on compact subsets, and the space X may be viewed as simply the constants in O(U, X). Every bounded operator T on X induces a continuous mapping TU on O(U, X) given by (Tuf)(λ) = (λ – T)f(λ) for every f e O(U, X) and λ e U. Corresponding to each closed F ⊂ С there is also an associated analytic subspace XT(F) = X ∩ ran(7c//F). For an arbitrary T e L(X), the spaces XT(F) are T-invariant, generally non-closed linear manifolds in X.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1998
References
REFERENCES
- 9
- Cited by