Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-15T15:17:56.679Z Has data issue: false hasContentIssue false

Constructing quaternionic fields

Published online by Cambridge University Press:  18 May 2009

Theresa P. Vaughan
Affiliation:
University of North Carolina at Greensboro, Greensboro, Nc 27412, USA
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a field of characteristic different from 2, and a, b quadratically independent elements of K. Put J= K(√a, √b). In [4], Jensen and Yui discuss the question of quaternionic (Q8) extensions of J, and give a survey of known results. In [8], Ware discusses (among other things) some general conditions for, and relations between, the existence of Q8 and D4 (dihedral) extensions of K. A general theorem of Witt [9] says that J will have a quaternionic extension J(√u) if and only if there exists a 3 × 3 matrix P over K such that PPt = diag(a, b, 1/ab), and an appropriate value for u is given in terms of the entries of P. The problem of actually finding P in a particular case is not trivial.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1992

References

REFERENCES

1.Brown, Ezra, Class numbers of real quadratic fields, Trans.Amer. Math. Soc. 190 (1974), 99107.CrossRefGoogle Scholar
2.Bucht, G., Uber einige algebraische Korper achten Grades, Arkiv for Matematik, Astronomi och Fysik, Bd. 6, 30 (1910),136.Google Scholar
3.Cohn, Harvey, Quaternionic compositum genus, J. Number Theory, 11, (1979), 399411.CrossRefGoogle Scholar
4.Christian, U. Jensen and Noriko Yui, Quaternion Extensions, Algebraic Geometry and Commutative Algebra (1987), 155182.CrossRefGoogle Scholar
5.Reichardt, H., Uber Normalkorper mit Qaternionengruppe, Math. Zeitschrift 41, (1936), 218221.CrossRefGoogle Scholar
6.Rosenbluth, Emanuel, Die Arithmetische Theorie und die Konstruktion der Quaternionenkorper auf klassenkorpertheoretischer Grundlage, Monatshefte fur Math. u. Phys. 41 (1934), 85125.CrossRefGoogle Scholar
7.Thomas, A. D. and Wood, G. V., Group tables (Shiva Publishing, 1980).Google Scholar
8.Ware, Roger, A note on the quaternion group as Galois group, Proc. Amer. Math. Soc. 108, (1990), 621625.CrossRefGoogle Scholar
9.Witt, E., Konstruktion von galoisschen Korpern der Charakteristik p zu vorgegebener Gruppe der Ordnung, J. Reine Angew. Math. 174 (1936), 237245.CrossRefGoogle Scholar