No CrossRef data available.
Article contents
On affine completeness of distributive p-algebras
Published online by Cambridge University Press: 18 May 2009
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
G. Grätzer in [4] proved that any Boolean algebra B is affine complete, i.e. for every n ≥ 1, every function f:Bn→B preserving the congruences of B is algebraic. Various generalizations of this result have been obtained (see [7]–[ll] and [2], [3]).
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1992
References
REFERENCES
1.Balbes, R. and Dwinger, P., Distributive lattices (Univ. Missouri Press, Columbia, Miss., 1974).Google Scholar
2.Beazer, R., Affine complete Stone algebras, Acta. Math. Acad. Sci. Hungar. 39 (1982), 169–174.CrossRefGoogle Scholar
3.Beazer, R., Affine complete double Stone algebras with bounded core, Algebra Universalis 16 (1983), 237–244.CrossRefGoogle Scholar
4.Grätzer, G., On Boolean functions (notes on Lattice theory II), Revue de Math. Pures et Appliquées 7 (1962), 693–697.Google Scholar
5.Grätzer, G., Boolean functions on distributive lattices, Ada Math. Acad. Sci. Hungar. 15 (1964), 195–201.CrossRefGoogle Scholar
6.Grätzer, G., Lattice theory. First concepts and distributive lattices (W. H. Freeman, San Francisco, 1971).Google Scholar
7.Hu, T.-K., Characterizations of algebraic functions in equational classes generated by independent primal algebras, Albegra Universalis 1 (1971), 187–191.CrossRefGoogle Scholar
8.Iskander, A. A., Algebraic functions on p-rings, Colloq. Math. 25 (1972), 37–42.CrossRefGoogle Scholar
9.Keimel, K. and Werner, H., Stone duality for varieties generated by quasi-primal algebras. Recent advances in the representation theory of rings and C*-algebras by continuous sections, (Sem. Tulane Univ. New Orleans La. 1973), Mem. Amer. Math. Soc. 148 (1974), 59–85.Google Scholar
10.Knoebel, R. A., Congruence-preserving functions in quasiprimal varieties, Algebra Universalis 4 (1974), 287–288.CrossRefGoogle Scholar
11.Pixley, A. F., Completeness in arithmetical algebras, Algebra Universalis 2 (1972), 179–196.CrossRefGoogle Scholar
12.Werner, H., Produkte von Kongruenzklassengeometrien universeller Algebren, Math. Z. 121 (1971), 111–140.CrossRefGoogle Scholar
You have
Access