Published online by Cambridge University Press: 18 May 2009
Over a field of prime characteristic p the group algebra of a finite group has a non-trivial radical if and only if the order of the group is divisible by the prime p. In two earlier papers [7,8] we have imposed certain restrictions on the radical, namely that the radical be contained in the centre of the group algebra and that the radical be of square zero, and we have considered what influence these conditions have on the structure of the group itself. These conditions are, at first sight, of different types and our present paper is an attempt to generalise them by merely assuming that the radical is commutative.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.