Published online by Cambridge University Press: 18 May 2009
1. It is known that any polynomial in μ. can be expanded as a linear function of Legendre polynomials [1]. In particular, we have
The earlier coefficients, say A0, A2, A4 may easily be found by equating the coefficients of μp+q, μp+q-2, μp+q-4 on the two sides of (1). The general coefficient A2k might then be surmised, and the value verified by induction. This may have been the method followed by Ferrers, who stated the result as an exercise in his Spherical Harmonics (1877). A proof was published by J. C. Adams [2]. The proof now to be given follows different lines from his.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.