Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-08T00:49:46.189Z Has data issue: false hasContentIssue false

α-TYPE CHEVALLEY–EILENBERG COHOMOLOGY OF HOM-LIE ALGEBRAS AND BIALGEBRAS

Published online by Cambridge University Press:  03 July 2019

ABDENACER MAKHLOUF
Affiliation:
IRIMAS, Département de Mathématiques, Université de Haute Alsace, Mulhouse, France e-mail: benedikt.hurle@uha.fr, Abdenacer.Makhlouf@uha.fr

Abstract

The purpose of this paper is to define an α-type cohomology, which we call α-type Chevalley–Eilenberg cohomology, for Hom-Lie algebras. We relate it to the known Chevalley–Eilenberg cohomology and provide explicit computations for some examples. Moreover, using this cohomology, we study formal deformations of Hom-Lie algebras, where the bracket as well as the structure map α are deformed. Furthermore, we provide a generalization of the grand crochet and study, in a particular case, the α-type cohomology for Hom-Lie bialgebras.

Type
Research Article
Copyright
© Glasgow Mathematical Journal Trust 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arfa, A., Fraj, N. Ben and Makhlouf, A., Morphisms cohomology and deformations of Homalgebras, J. Nonlinear Math. Phys. 25(4) (2018), 589603.CrossRefGoogle Scholar
Ammar, F., Ejbehi, Z. and Makhlouf, A., Cohomology and deformations of Hom-algebras, J. Lie Theory 21(4) (2011), 813836.Google Scholar
Cai, L. and Sheng, Y., Hom-big brackets: theory and applications, SIGMA Symmetry Integrability Geom. Methods Appl. 12(014) (2016), 18.Google Scholar
Chen, X. and Han, W., Classification of multiplicative simple Hom-Lie algebras, J. Lie Theory 26(3) (2016), 767775.Google Scholar
Dekkar, K. and Makhlouf, A., Gerstenhaber–Schack cohomology for Hom-bialgebras and deformations, Comm. Algebra 45(10) (2017), 44004428.CrossRefGoogle Scholar
Fadous, M., Mabrouk, S. and Makhlouf, A., On Hom-Lie superbialgebras, Comm. Algebra 47(1) (2019), 114137.CrossRefGoogle Scholar
Frégier, Y., Markl, M. and Yau, D., The L-deformation complex of diagrams of algebras, New York J. Math. 15 (2009), 353392.Google Scholar
Frégier, Y. and Zambon, M., Simultaneous deformations of algebras and morphisms via derived brackets, J. Pure Appl. Algebra 219(12) (2015), 53445362.CrossRefGoogle Scholar
Hartwig, J. T., Larsson, D. and Silvestrov, S. D., Deformations of Lie algebras using σ-derivations, J. Algebra 295(2) (2006), 314361.CrossRefGoogle Scholar
Hurle, B. and Makhlouf, A., α-type Hochschild cohomology of Hom-associative algebras and Hom-bialgebras, arXiv:1806.01169, 2018, to appear in J. Korean Math. Soc.Google Scholar
Kosmann, Y.-Schwarzbach, Jacobian quasi-bialgebras and quasi-Poisson Lie groups, Contemp. Math., Am. Math. Soc. 132 (1992), 459489.CrossRefGoogle Scholar
Lecomte, P. B. A. and Roger, C., Modules et cohomologies des bigébres de Lie, C. R. Acad. Sci. Paris Sér. I Math. 310(6) (1990), 405410.Google Scholar
Makhlouf, A. and Silvestrov, S. D., Hom-algebra structures, J. Gen. Lie Theory Appl. 2(2) (2008), 5164.CrossRefGoogle Scholar
Makhlouf, A. and Silvestrov, S., Notes on 1-parameter formal deformations of Homassociative and Hom-Lie algebras, Forum Math. 22(4) (2010), 715739.CrossRefGoogle Scholar
Markl, M., A resolution (minimal model) of the PROP for bialgebras, J. Pure Appl. Algebra 205(2) (2006), 341374.CrossRefGoogle Scholar
Nijenhuis, A. and Richardson, R. W. Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Am. Math. Soc. 73 (1967), 175179.CrossRefGoogle Scholar
Sheng, Y. and Bai, C., A new approach to hom-Lie bialgebras, J. Algebra 399 (2014), 232250.CrossRefGoogle Scholar
Yau, D., The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras, Int. Electron. J. Algebra 17 (2015), 1145.CrossRefGoogle Scholar