No CrossRef data available.
Published online by Cambridge University Press: 18 May 2009
In this note we characterize certain types of spectral decomposition in terms of “universal” notions valid for any operator on a Banach space. To be precise, let X be a complex Banach space and let T be a bounded linear operator on X. If F is a closed set in the plane C, let X(T, F) consist of all y ∈ X satisfying thes identity
where f:C\F → X is analytic. It is then easy to see that X(T, F) is a T-invariant linear manifold in X. Moreover, if y ∈ X then
is a compact subset of the spectrum σ(T). Our aim is to give necessary and sufficient conditions for a decomposable or strongly decomposable operator in terms of X(T, F) and γ(y, T). Recall that T is decomposable if whenever G1G2 are open and cover C there exist T-invariant closed linear manifolds M1, M2 with X= M1 + M2 and σ(T | M1) ⊂ Gi(i = 1,2) (equivalently, σ(T | Mi)⊂ Ḡi, see [4, p. 57]). In this case, X(T, F) is norm closed if Fis closed and each y in X has a unique maximally defined local resolvent satisfying (1.1) on C\Fy; Fy is called the local spectrum σ(y, T) and coincides with γ(y, T). Hence T has the single valued extension property (SVEP); i.e., zero is the only analytic function f:V → X satisfying (z − T)f(z) = 0 on V. If T is decomposable and the restriction T | X(T, F) is also decomposable for each closed F, then T is called strongly decomposable. We point out that Albrecht [2] has shown by example that not every decomposable operator is strongly decomposable, while Eschmeier [6]has given a simpler construction to show that this phenomenon occurs even in Hilbert space.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.