Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T21:47:02.173Z Has data issue: false hasContentIssue false

WEAK BEHAVIOUR OF FOURIER-NEUMANN SERIES

Published online by Cambridge University Press:  01 May 2003

ÓSCAR CIAURRI
Affiliation:
Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio J. L. Vives, Calle Luis de Ulloa s/n, 26004 Logroño, Spain e-mail: oscar.ciaurri@dmc.unirioja.es
MARIO PÉREZ
Affiliation:
Departamento de Matemáticas, Edificio de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain e-mail: mperez@posta.unizar.es
JUAN L. VARONA
Affiliation:
Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio J. L. Vives, Calle Luis de Ulloa s/n, 26004 Logroño, Spain e-mail: jvarona@dmc.unirioja.es URL: http://www.unirioja.es/dptos/dmc/jvarona/welcome.html
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $J_\mu$ denote the Bessel function of order $\mu$. The functions $x^{-\alpha-1} J_{\alpha+2n+1}(x), n=0,1,2,\ldots,$ form an orthogonal system in the space $L^2((0,\infty), x^{2\alpha+1}dx)$ when $\alpha >{-}1$. In this paper we prove that the Fourier series associated to this system is of restricted weak type for the endpoints of the interval of mean convergence, while it is not of weak type if $\alpha\,{\ge}\,0$.

Keywords

Type
Research Article
Copyright
2003 Glasgow Mathematical Journal Trust

Footnotes

Research supported by grants of the DGI and UR.