No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
The application of CCD photometry to monitoring the light variations of very small asteroids has led to an explosion of data available, and perhaps as importantly, has made it possible to probe fainter, and hence smaller asteroids. In this paper, we review several new results from the analysis of such lightcurve data, much of it taken by the late W. Z. Wisniewski, a native of Poland who studied at Poznan University (Wisniewski et al., 1997).
At the time of the last close pass of the asteroid 4179 Toutatis by the Earth in 1992, it became apparent from radar observations that the asteroid was in a bizarre rotation state, and that the rotation rate was extremely slow. Harris (1994), re-evaluating the work by Burns and Safronov (1973) found that very small and slowly rotating asteroids can have a time scale of damping into a principal-axis rotation state which is long compared to their expected collisional lifetime, or for that matter, the age of the solar system:
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.