Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T16:56:57.172Z Has data issue: false hasContentIssue false

Element Diffusion in Pulsating Variables

Published online by Cambridge University Press:  15 February 2018

Joyce Ann Guzik*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Can pulsation studies yield information on the operation of element diffusion in stars? Can diffusion explain unusual properties of pulsating variables? Element diffusion theory and recent research relevant to these questions will be reviewed, with emphasis on the Sun and δ Scuti stars. High-degree solar p-modes that are sensitive to helium ionization support a reduced convection zone helium abundance consistent with that expected from diffusion. Intermediate-degree p-modes can be used to probe the structure of the convection zone base and constrain possible diffusion-produced composition gradients. δ Scuti variables have shallow convection zones and relatively short diffusion timescales. Helium diffusion may explain unusual period ratios, influence period changes, and affect the amplitudes and light curve shapes of δ Scuti stars.

Type
Theoretical Breakthroughs
Copyright
Copyright © Cambridge University Press 1993

References

Antonello, E., Poretti, E., and Stellingwerf, R. F., 1988, in: Multimode Stellar Pulsations, eds. Kovacs, G., Szabados, L., and Szeidl, B., Kultura, Budapest.Google Scholar
Bradley, P., 1992, “The Potential of Asteroseismology of DB White Dwarfs,” these proceedings.Google Scholar
Breger, M., 1990, in: Confrontation Between Stellar Evolution and Pulsation, Bologna, Italy, May, 1990.Google Scholar
Burgers, J. M., 1969, Flow Equations for Composite Gases, Academic Press, New York.Google Scholar
Cox, A. N., 1992, “Interpretations of Solar Oscillations,” these proceedings.Google Scholar
Cox, A. N., Guzik, J. A., and Kidman, R. B., 1989, Astrophys. J. 342, 1187.Google Scholar
Cox, A. N., McNamara, B. J., and Ryan, W., 1984, Astrophys. J. 284, 250.Google Scholar
Cox, A. N., Morgan, S. M., Rogers, F. J., and Iglesias, C. A., 1992, Astrophys. J. 398, 272.Google Scholar
Dziembowski, W. A., Pamyatnykh, A. A., and Sienkiewicz, R., 1992, M.N.R.A.S., in press.Google Scholar
Guzik, J. A. and Cox, A. N., 1991a, Astrophys. J 381, 333.Google Scholar
Guzik, J. A. and Cox, A. N., 1991b, Delta Scuti Newsletter, ed. Breger, M., Issue 3.Google Scholar
Guzik, J. A. and Cox, A. N., 1992, Astrophys. J. 386, 729.Google Scholar
Iben, I. and MacDonald, J., 1985, Astrophys. J. 298, 540.Google Scholar
Korzennik, S. G., 1990, Ph. D. Dissertation, UCLA.Google Scholar
Libbrecht, K. G., Woodard, M. R., and Kaufman, J. M., 1990, Astrophys. J. Suppl. 74, 1129.Google Scholar
Matthews, J. M., 1991, Publ. Astron. Soc. Pacific 103, 5.Google Scholar
Michaud, G., Vauclair, G., and Vauclair, S., 1983, Astrophys. J. 267, 256.Google Scholar
Michaud, G. and Proffitt, C. R., 1992, in: Inside the Stars, IAU Colloquium 137, eds. A. Baglin and W. W. Weiss, Astron. Soc. of Pacific Conf. Series, in press.Google Scholar
Paquette, C., Pelletier, C., Fontaine, G., and Michaud, G., 1986, Astrophys. J. Suppl. 61, 177.Google Scholar
Poretti, E., and Antonello, E., 1988, Astron. Astrophys. 199, 191.Google Scholar
Proffitt, C. and Michaud, G., 1991, Astrophys. J. 380, 238.Google Scholar
Saez, M., Auvergne, M., Valtier, J.-C., Baglin, A., and Morel, P., 1981, Astron. Astrophys. 101, 259.Google Scholar
Vorontsov, S. V., Baturin, V. A., and Pamyatnykh, A. A., 1992, Nature 349, 49.Google Scholar