Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-27T02:27:59.406Z Has data issue: false hasContentIssue false

The Global Interaction of Comets with the Solar Wind

Published online by Cambridge University Press:  12 April 2016

K. R. Flammer*
Affiliation:
Department of Electrical and Computer Engineering University of California, San Diego La Jolla, CA 92093, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The global interaction of the solar wind with a comet as it orbits the Sun is reviewed. After a brief survey of the flow transition regions observed at comet Halley is presented, theoretical models are given for the cometocentric distance of the bow shock, the cometopause, and the ionopause. In addition, predictions are made as to what heliocentric distance these boundaries should form at. The results of these models are compared with the in situ observations at comet Halley.

Type
Section VII: Plasmas and Fields
Copyright
Copyright © Kluwer 1991

References

Amata, E., Formisano, V., Cerulli-Irelli, R., Torrente, P., Johnstone, A.D., Coates, A., Wilken, B., Jockers, K., Winningham, J.D., Bryant, D., Borg, H., and Thomsen, M. (1986). ‘The cometopause region at comet Halley,’ ESA SP-250, Vol. 1, 213218.Google Scholar
Balsiger, H., Altwegg, K., Buhler, F., Geiss, J., Ghielmetti, A.G., Goldstein, B.E., Goldstein, R., Huntress, W.T., Ip, W.-H., Lazarus, A.J., Meier, A., Neugebauer, M., Rettenmund, U., Rosenbauer, H., Schwenn, R., Sharp, R.D., Shelley, E.G., Ungstrup, E., and Young, D.T. (1986). ‘Ion composition and dynamics at comet Halley,’ Nature, 321, 330335.CrossRefGoogle Scholar
Balsiger, H., Altwegg, K., Buhler, F., Fuselier, S.A., Geiss, J., Goldstein, B.E., Goldstein, R., Huntress, W.T., Ip, W.-H., Lazarus, A.J., Meier, A., Neugebauer, M., Rettenmund, U., Rosenbauer, II., Schwenn, R., Shelley, E.G., Ungstrup, E., and Young, D.T. (1987). ‘The composition and dynamics of cometary ions in the outer coma of P/Halley,’ Astron. Astrophys., 187, 163.Google Scholar
Baranov, V.B., Zaitsev, N.A., and Lebedev, M.G. (1986). ‘Model of solar wind interaction with atmospheres of comets,’ Astron. Zurn., 63, 170.Google Scholar
Biermann, L., Brosowski, B., and Schmidt, H.U. (1967). ‘The interaction of the solar wind with a comet,’ Solar Phys., 1, 254283.Google Scholar
Cravens, T.E. (1986). ‘Physics of the cometary contact surface,’ ESA SP-250, Vol. 1, 241246.Google Scholar
Cravens, T.E. (1989). ‘A magnetohydrodynamical model of the inner coma of comet Halley,’ J. Geophys. Res., 94, 15025.CrossRefGoogle Scholar
Ershkovich, A.I., and Flammer, K.R. (1988). ‘Nonlinear stability of the dayside cometary ionopause,’ Astrophys. J., 311, 1031.Google Scholar
Ershkovich, A.I., and Mendis, D.A. (1986). ‘Effects of the interaction between plasma and neutrals on the stability of the cometary ionopause,’ Astrophys. J., 302, 1101.CrossRefGoogle Scholar
Ershkovich, A.I., Flammer, K.R., and Mendis, D.A. (1986). ‘Stability of the sunlit cometary ionopause,’ Astrophys., 87, 1031.Google Scholar
Ershkovich, A.I., McKenzie, J.F., and Axford, W.I. (1989). ‘Stability of a cometary ionosphere/ionopause determined by ion-neutral friction,’ Astrophys. J., submitted.Google Scholar
Eviatar, A., and Goldstein, B.E. (1988). ‘A unidimensional model of the comet ionopause structure,’ J. Geophys. Res., 93, 1759.CrossRefGoogle Scholar
Flammer, K.R., Mendis, D.A., and Houpis, H.L.F. (1987, in press). ‘The variable nature of the solar wind interaction with comet Halley as it approaches the sun,’ in Proc. STIP Symposium on Retrospective Analysis and Future Coordinated Intervals, Los Diablerets, Switzerland, D. Reidel Pub. Co.Google Scholar
Flammer, K.R., Omidi, N., and Quest, K.B. (1989). ‘The structure of the cometary ionopause,’ AGU Fall Meeting, San Francisco, EOS, 70, 1181.Google Scholar
Galeev, A. A. (1986). ‘Theory and observations of solar wind/cometary plasma interaction processes,’ ESA SP-250, Vol. 1, 3.Google Scholar
Galeev, A.A. (1987). ‘Encounters with comets: Discoveries and puzzles in cometary plasma physics,’ Astron. Astrophys., 187, 1220.Google Scholar
Galeev, A.A., and Lipatov, A.S. (1984). ‘Plasma processes in cometary atmospheres,’ Adv. Space Res., 4, 229237.CrossRefGoogle Scholar
Galeev, A.A., Cravens, T.E., and Gombosi, T.I. (1985). ‘Solar wind stagnation near comets,’ Astrophys. J., 289, 807819.CrossRefGoogle Scholar
Galeev, A.A., Gringauz, K.I., Klimov, S.I., Remizov, A.P., Sagdeev, R.Z., Savin, S.P., Sokolor, A. Yu., Verigin, M.I., Szego, K., Tatrallyay, M., Grard, R., Yerosenko, Ye.G., Mogilevsky, M., Riedler, W., and Schwingenschuh, K. (1988). ‘Physical processes in the vicinity of the cometopause interpreted on the basis of plasma, magnetic field, and plasma wave data measured on board the Vega 2 spacecraft,’ J. Geophys. Res., 93, 75277531.CrossRefGoogle Scholar
Gazis, P.R., and Lazarus, A.J. (1982). ‘Voyager observations of solar wind proton temperature: 1–10 AU,’ Geophys. Res. Lett., 9, 431.Google Scholar
Goldstein, B.E., Altwegg, K., Balsiger, H., Fuselier, S.A., Ip, W.-H., Meier, A., Neugebauer, M., Rosenbauer, H., and Schwenn, R. (1989). ‘Observations of a shock and a recombination layer at the contact surface of comet Halley,’ J. Geophys. Res., 94, 17251.Google Scholar
Goldstein, R., Young, D.T., Balsiger, H., Buehler, F., Goldstein, B.E., Neugebauer, M., Rosenbauer, H., Schwenn, R., and Shelley, G.G. (1987). ‘Hot ions observed by the Giotto Ion Mass Spectrometer at the comet P/Halley contact surface,’ Astron. Astrophys., 187, 220.Google Scholar
Gombosi, T.I. (1987). ‘Charge exchange avalanche at the cometopause,’ Geophys. Res. Lett., 14, 1174.Google Scholar
Gringauz, K.I., Gombosi, T.I., Remizov, A.P., Apathy, I., Szemerey, I., Verigin, M.I., Denchikova, L.I., Dyachkov, A.V., Keppler, E., Klimenko, N., Richter, A.K., Somogyi, A.J., Szego, K., Szendro, S., Tatrallyay, M., Verga, A., and Vladimirova, G.A. (1986a). ‘First in situ plasma and neutral gas measurements at comet Halley,’ Nature, 321, 282.Google Scholar
Gringauz, K.I., Gombosi, T.I., Tatrallyay, M., Verigin, M.I., Remizov, A.P., Richter, A.K., Apathy, I., Szemerey, I., Dyachkov, A.V., Balakina, O.V., and Nagy, A.F. (1986b). ‘Detection of a new chemical boundary at comet Halley,’ Geophys. Res. Lett., 13, 613.Google Scholar
Haerendel, G. (1987). ‘Plasma transport near the magnetic cavity surrounding comet Halley,’ Geophys. Res. Lett., 14, 673.Google Scholar
Houpis, H.L.F., and Mendis, D.A. (1980). ‘Physicochemical and dynamical processes in cometary ionospheres — 1. The basic flow profile,’ Astrophys. J., 239, 11071118.Google Scholar
Ip, W.-H. (1989). ‘On charge exchange effect in the vicinity of the cometopause of comet Halley,’ Astrophys. J., 343, 946.Google Scholar
Ip, W.-H., and Axford, W.I. (1982). ‘Theories of physical processes in cometary comas and ion tails,’ in Comets, Wilkening, L.L. (ed.), University of Arizona Press, Tucson, Arizona, p. 588.Google Scholar
Ip, W.-H., and Axford, W.I. (1987). ‘The formation of the magnetic-field-free cavity,’ Nature, 325, 418.Google Scholar
Korosmezey, A., Cravens, T.E., Gombosi, T.I., Nagy, A.F., Mendis, D.A., Szego, K., Gribov, B.E., Sagdeev, R.Z., Shapiro, V.D., and Shevchenko, V.I. (1987). ‘A comprehensive model of cometary ionospheres,’ J. Geophys. Res., 92, 7331.Google Scholar
Mendis, D.A., and Flammer, K.R. (1984). ‘The multiple modes of interaction of the solar wind with a comet as it approaches the sun,’ Earth, Moon and Planets, 31, 301.Google Scholar
Mendis, D.A., Houpis, H.L.F., and Marconi, M.L. (1985). ‘The physics of comets,’ Fundamentals of Cosmic Physics, 10, 1.Google Scholar
Mendis, D.A., Smith, E.J., Tsurutani, B.T., Slavin, J.A., Jones, D.E., and Siscoe, G.L. (1986). ‘Comet-solar wind interactions: Dynamical length scales and models,’ Geophys. Res. Lett., 13, 239.Google Scholar
Mendis, D.A., Flammer, K.R., Reme, H., Sauvaud, J.A., D’Uston, C., Cotin, F., Cros, A., Anderson, K.A., Carlson, C.W., Curtis, D.W., Larson, D.E., Lin, R.P., Mitchell, D.L., Korth, A., and Richter, A.K. (1989). ‘On the global nature of the solar wind interaction with comet Halley,’ Annales Geophysicae, 7, 99.Google Scholar
Neubauer, F.M. (1986). ‘Giotto magnetic field results on the magnetic field pile-up region and the cavity boundaries,’ ESA SP-250, Vol. 1, 35.Google Scholar
Neubauer, F.M. (1987). ‘Giotto magnetic field results on the boundaries of the pile-up region and the magnetic cavity,’ Astron. Astrophys., 187, 7379.Google Scholar
Neubauer, F.M. (1988). ‘The ionopause transition and boundary layers at comet Halley from Giotto magnetic field observations,’ J. Geophys. Res., 93, 72727281.Google Scholar
Neugebauer, M., Slavin, J., and Ip, W.-H. (1985). A Plasma Model for Comet Kopff, JPL internal document D-2524, pp. 120.Google Scholar
Ogino, T., Walker, R.J., and Ashour-Abdalla, M. (1988). ‘A three-dimensional MHD simulation of the interaction of the solar wind with comet Halley,’ J. Geophys. Res., 93, 95689576.CrossRefGoogle Scholar
Omidi, N., and Winske, D. (1986). ‘Simulation of the solar wind interaction with the outer regions of the coma,’ Geophys. Res. Lett., 13, 397.CrossRefGoogle Scholar
Omidi, N., and Winske, D. (1987). ‘A kinetic study of solar wind mass loading and cometary bow shocks,’ J. Geophys. Res., 92, 1340913426.Google Scholar
Omidi, N., Winske, D., and Quest, K.B. (1989). ‘The effect of ion/neutral collisions on the structure of electrostatic shocks: Application to cometary inner shocks,’ EOS, 70, 384.Google Scholar
Riedler, W., Schwingenschuh, K., Yeroshenko, Ye.G., Styashkin, V.A., and Russell, C.T. (1986). ‘Magnetic field observations in comet Halley’s coma,’ Nature, 321, 288289.Google Scholar
Reme, H. (1990, in press). ‘Regions of interaction between the solar wind plasma and the plasma environment of comets,’ in Comet Halley 1986 World-Wide Investigations, Results, and Interpretations, E. Horwood Ltd., Chichester, England.Google Scholar
Sagdeev, R.Z., Shapiro, V.D., Shevchenko, V.I., and Szego, K. (1986). ‘MHD turbulence in the comet solar wind interaction region,’ Geophys. Res. Lett., 13, 8588.Google Scholar
Schmidt, H.U., and Wegmann, R. (1976). ‘Interaction of interplanetary magnetic fields with cometary plasma,’ Max-Planck-Institut für Plasmaphysik, Garching, IPP6–147.Google Scholar
Schmidt, H.U., and Wegmann, R. (1982). ‘Plasma flow and magnetic fields in comets,’ in Comets, Wilkening, L.L. (ed.), University of Arizona Press, Tucson, Arizona, pp. 538560.Google Scholar
Schwenn, R., Ip, W.-H., Rosenbauer, H., Balsiger, H., Buhler, F., Goldstein, R., Meier, A., and Shelley, E.G. (1986). ‘Ion temperature and flow profiles in comet Halley’s close environment,’ Astron. Astrophys., 187, 160.Google Scholar
Vaisberg, O.L. (1988). ‘Density distribution of heavy ions in the head of Halley’s comet,’ Cos. Phys., 26, 9.Google Scholar
Wallis, M.K. (1973). ‘Weakly shocked flows of the solar wind through atmospheres of comets and planets,’ Planet. Space Sci., 21, 1647.Google Scholar
Wallis, M.K., and Dryer, M. (1976). ‘Sun and comets as sources in an external flow,’ Astrophys. J., 205, 895899.Google Scholar
Wallis, M.K., and Dryer, M. (1985). ‘Decay of the cometary bow shock,’ Nature, 318, 646.Google Scholar
Winske, D., Wu, C.S., Li, Y.Y., Mou, Z.Z., and Guo, S.Y. (1985). ‘Coupling of newborn ions to the solar wind by electromagnetic instabilities and their interaction with the bow shock,’ J. Geophys. Res., 90, 2713.Google Scholar
Wu, C.S., and Davidson, R.C. (1972). ‘Electromagnetic instabilities produced by neutral particle ionization in interplanetary space,’ J. Geophys. Res., 77, 5399.Google Scholar