No CrossRef data available.
Published online by Cambridge University Press: 27 February 2018
It is probable that most molecules in space are formed on the surface of small solid grains in dense molecular clouds. Such grains have generally accumulated icy mantles inside dark clouds. We have investigated the dynamical behavior of a hydrogen atom impinging on the mantle consisting of amorphous water ice based on an MD (Molecular Dynamics) computer simulation to estimate the structure of the resulting grains with the icy mantles. We have found that the hydrogen atoms impinging on the surface of amorphous water ice were easily trapped in a dent of the surface and, consequently they are fixed there firmly. Our results, which neglect tunneling, suggest that the migration of hydrogen atoms over a large region of the surface of icy grains may be less common than is often assumed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.