Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-02T23:44:20.239Z Has data issue: false hasContentIssue false

Pressure-Induced Molecular Absorption in Stellar Atmospheres

Published online by Cambridge University Press:  12 April 2016

Aleksandra Borysow*
Affiliation:
Physics Department, Michigan Technological University, Houghton, MI 49931, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pressure-induced absorption arises in complexes of two or more inert atoms or molecules, due to dipole moments induced during the collisional interaction. The term “pressure-induced” still prevails in the astrophysical literature, yet “collision-induced” absorption (CIA), or “interaction-induced” absorption seems more appropriate and is commonly used elsewhere. Ordinary absorption processes in the infrared arise from individual, polar molecules interacting with electromagnetic radiation. As a consequence, the intensity of the allowed lines increases linearly with density. CIA, on the other hand, is most striking in gases composed of nonpolar, infrared-inactive molecules. Induced spectral lines are observed at rovibrational frequencies which are dipole-forbidden in single (i.e. non-interacting) molecules. Dipole transitions may, however, be induced in the interacting pair. The new symmetry of the electronic cloud of a collisional complex may be very different from those of the isolated molecules and thus commonly allows for a transient dipole, which then interacts with radiation. Collision-induced absorption increases quadratically in the low density limit, thus reflecting the two-body origin of the basic absorption process. At higher gas densities, ternary interactions become significant and cubic and higher-order contributions to the observable absorption are then commonly seen.

Type
Research Article
Copyright
Copyright © Springer-Verlag 1994

References

Allard, F., 1994, In: Thejll, P. & Jørgensen, U. G. (eds.), Poster session proceedings of IA U Coll. 146, Copenhagen University, p. 1 Google Scholar
Birnbaum, G., Chu, S.-L, Dalgarno, A., Frommhold, L., Wright, E. L., 1984, Phys. Rev., 29A, 595 Google Scholar
Birnbaum, G. (ed.), 1985, Phenomena Induced by Intermolecular Interactions, NATO ASI Series, B: Physics, (New York: Plenum Press), vol. 127 Google Scholar
Borysow, A., 1993, unpublished Google Scholar
Borysow, A., Frommhold, L., 1989, Astrophys. J., 341, 549 CrossRefGoogle Scholar
Borysow, A., Frommhold, L., 1990, Astrophys. J. Lett., 348, L41 Google Scholar
Borysow, A., Frommhold, L., 1991, I. Geophys. Res.: Planets, 96, 17, 501 Google Scholar
Borysow, A., Frommhold, L., Dore, P., 1987, Int. J. of IR and mm Waves, 8, 381 Google Scholar
Borysow, A., Frommhold, L., Moraldi, M., 1989, Astrophys. J., 336, 495 Google Scholar
Borysow, A., Frommhold, L., Meyer, W., 1990, Phys. Rev., A, 41, 264 Google Scholar
Borysow, A., Moraldi, M., Frommhold, L., 1991, In: Trends in Chemical Physics, (India: Council of Scientific Research Integration), 1, p. 83 Google Scholar
Borysow, J., Frommhold, L., 1985, In: Birnbaum, G. (ed.), Phenomena Induced by Intermolecular Interactions, (New York: Plenum Press), p. 67 Google Scholar
Borysow, J., Trafton, L., Frommhold, L., Birnbaum, G., 1985, Astrophys. J., 296, 644 Google Scholar
Borysow, J., Frommhold, L., Birnbaum, G., 1988, Astrophys. J., 326, 509 Google Scholar
Burrows, A., Hubbard, W., Lunine, J., 1993, Astrophys. J., 345, 939 Google Scholar
Frommhold, L., 1993, Collision-Induced Absorption in Gases, Cambridge Monographs on AtomiC, Molecular and Chemical Physics 2, (New York: Cambridge University Press), 1 editionGoogle Scholar
Frommhold, L., Meyer, W., 1987, Phys. Rev., A 35, 632 Google Scholar
Frommhold, L., Keto, J. (eds.), 1990, Spectral Line Shapes, (New York: American Institute of Physics, AIP), volume 6Google Scholar
Lewis, J. C., 1985, In: Birnbaum, G. (ed.), Phenomena Induced by Intermolecular Interactions, (New York: Plenum Press), p. 215 Google Scholar
Lenzuni, P., Chernoff, D. F., Salpeter, E. E., 1991, Astrophys. J. Suppl., 76, 759 Google Scholar
Lenzuni, P., Saumon, D., 1992, Rev. Mexicana Astron. Astrof., 23, 223 Google Scholar
Linsky, J. L., 1969, Astrophys. I., 156, 989 Google Scholar
Meyer, W., Frommhold, L., 1989, Phys. Rev., A 34, 2771 Google Scholar
Meyer, W., Borysow, A., Frommhold, L., 1989, Phys. Rev., A, 40, 6931 CrossRefGoogle Scholar
Meyer, W., Frommhold, L., Birnbaum, G., 1989, Phys. Rev. A, 39, 2434 Google Scholar
Moraldi, M., Borysow, A., Frommhold, L., 1988, Phys. Rev., A, 38, 1839 CrossRefGoogle Scholar
Moraldi, M., Frommhold, L., 1989, Phys. Rev., A, 40, 6260 CrossRefGoogle Scholar
Mould, J., Liebert, J., 1978, Astrophys. I., 226, L29 Google Scholar
Palla, F., 1985, In: Diercksen, G. H. F. et al. (eds.), Molecular Astrophysics, D. Reidl Publ. Co., p. 687 CrossRefGoogle Scholar
Patch, R. W., 1971, J. Quant. Spectr. and Rad. Transfer, 11, 1331 Google Scholar
Saumon, D., Bergeron, P., Lunine, J. L., 1994, In: Thejll, P. & Jørgensen, U. G. (eds.), Poster session proceedings of IA U Coll. 146, Copenhagen University, p. 98 Google Scholar
Shipman, H. L., 1977, Astrophys. J., 213, 138 Google Scholar
Stahler, S. W., Palla, F., Salpeter, E. E., 1986, Astrophys. J., 302, 590 Google Scholar
Szudy, J. (ed.), 1989, Spectral Line Shapes, volume 5. Ossolineum Publishing HouseGoogle Scholar
Trafton, L. M., 1964, Astrophys. J., 140, 1340 Google Scholar
Trafton, L. M., 1966, Astrophys. J., 146, 558 Google Scholar
Tsuji, T., 1969, In: Kumar, S.S. (ed.), Low Luminosity Stars, (New York: Gordon and Breach Science Publ.), p. 457 Google Scholar
van Kranendonk, J., 1968, Can. J. Phys., 46, 1173 Google Scholar
Yorke, H., 1993, Private communicationGoogle Scholar