No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
The fortuitous positioning of the Schweizer and Middleditch OB subdwarf behind SN1006 has permitted the detection and subsequent confirmation by IUE of broad (±5000 km/s) Fe II absorption features which probably arise from unshocked iron ejecta in the center of SN1006. The mass of detected Fe II, ∽0.012 M⊙, is however only 1/25 of the ∽0.3 M⊙ of Fe within ±5000 km/s predicted by carbon deflagration models. IR and optical observations exclude any appreciable iron in grains or Fe I, but high ion stages, Fe III and up, oould be present. Promising mechanisms for ionizing the unshocked iron in SN1006 include the radioactive decay of 44Ti, and photoionization by UV and X-ray emission from the reverse shock. Although the photoionization model works, insofar as it permits as much as 0.2 M⊙ of unshocked iron in the center of SN1006, agreement with the IUE data requires that the ejecta density profile be flatter, less centrally concentrated, than the W7 deflagration model of Nomoto, Thielemann, and Yokoi.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.