Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T09:34:17.025Z Has data issue: false hasContentIssue false

The Spatial, Temporal, and Photometric Properties of AGB Stars

Published online by Cambridge University Press:  12 April 2016

S. G. Kleinmann*
Affiliation:
University of Massachusetts

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Two Micron Sky Survey (Neugebauer & Leighton 1969;TMSS) provides a census of AGB stars which is relatively insensitive to interstellar or circumstellar reddening, temporal variations, or differences in photospheric temperature. This paper summarizes results from recent analyses of all carbon, S type, and mass-losing M stars in the TMSS, including local surface densities, scale heights, and mass loss rates. All three groups are concentrated toward the plane; the mass-losing M stars appear least concentrated toward the plane but most strongly concentrated toward the galactic center. Results from the IRAS survey were used to determine the range of infrared colors of stars in each class, and to estimate their mass loss rates. Carbon stars have relatively higher 60 μm flux densities than oxygen-rich stars, and have relatively higher mass loss rates. The total mass loss rate is dominated by a small fraction of the stars in this sample. IRAS photometry and IRAS Low Resolution Spectometer data do not unambiguously distinguish carbon-rich and oxygen-rich stars in this sample. Future searches for stars with the greatest mass loss rates might concentrate on sources found to be variable in the IRAS survey, since a large fraction of the TMSS stars with the most massive envelopes are known Miras or infrared variables.

Type
1. Properties and Kinematics of the Peculiar Red Giant Stars
Copyright
Copyright © Cambridge University Press 1993

References

Bidelman, W. P. 1980, Pub. Warner and Swasev Obs., 2, No. 6.Google Scholar
Claussen, M. J., Kleinmann, S. G., Joyce, R. R., and Jura, M. 1987, Ap. J. Suppl., 65, 385.Google Scholar
Frogel, J. A., Persson, S. E., and Cohen, J. G. 1980, Ap. J., 239, 495.Google Scholar
Fuenmayor, F. J. 1981, Rev. Mexičana Astr. Ap., 6, 83.Google Scholar
Glass, I. S., Catchpole, R. M., Feast, M. W., Whltelock, P. A., and Reid, I. N. 1987, In Late Stages of Stellar Evolution, ed. Kwok, S. and Pottach, S. R. (Dordrecht: Reidei), p. 51.Google Scholar
Hacking, P. et al. 1985, Pub. A.S.P., 97, 616.Google Scholar
IRAS Point Source Catalog. 1985, Joint IRAS Science Working Group (Washington, DC: GPO) (PSC).Google Scholar
Jura, M. 1986, Ap. J., 301, 624.Google Scholar
Jura, M. 1987, Ap. J. 313, 743.Google Scholar
Jura, M. 1988, Ap. JL Suppl., 66, 33.Google Scholar
Jura, M., Joyce, R. R., and Kleinmann, S. G. 1989, Ap. J., in press.Google Scholar
Jura, M., and Kleinmann, S. G. 1988, Ap. J., submitted.Google Scholar
Kholopov, P. N. 1985-1987, General Catalogue of Variable Stars, Vols. 1-3, (4th ed.; Moscow: Nauka Publishing House) (GCVS).Google Scholar
Kleinmann, S. G., Jura, M., Joyce, R. R., and Claussen, M.J. 1988, in preparation.Google Scholar
Kleinmann, S. G., Gillett, F. C., and Joyce, R. R. 1981, Ann. Rev. Astr. Ap., 19, 411.Google Scholar
Knapp, G. R. and Morris, M. 1985, Ap. J., 292, 640.Google Scholar
Lloyd Evans, T., 1984, M.N.R.A.S., 209, 825.Google Scholar
Neugebauer, G., and Leighton, R. B. 1969, Two Micron Sky Survey (NASA SP-3047) (TMSS).Google Scholar
Price, S. D., and Murdock, T. L. 1983, The Revised AFGL Infrared Sky Survey Catalog (AFGL-TR-83-0161).Google Scholar
Stephenson, C. B. 1973, Pub. Warner and Swasev Obs., 1, No. 4.Google Scholar
Thronson, H. A., Jr., Latter, W. B., Black, J. H., Bally, J., and Hacking, P. 1987, Ap. JL, 322, 770.Google Scholar
Wing, R. F.. and Yorka, S. B. 1977. M.N.R.A.S., 178. 383.Google Scholar
Zuckerman, B. and Dyck, H.M. 1986, Ap. J. 311, 345.Google Scholar
Zuckerman, B., Dyck, H. M., and Claussen, M. J. 1986, Ap. J., 304, 401.Google Scholar