Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T11:22:50.416Z Has data issue: false hasContentIssue false

Spectroscopic Techniques in X-Ray Astronomy

Published online by Cambridge University Press:  12 April 2016

Leon Van Speybroeck*
Affiliation:
American Science and Engineering, Cambridge, Mass., U.S.A.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The catalog of X-ray sources now includes types I and II super-novae remnants, at least one pulsar, other periodic or quasi-periodic sources, starlike objects which emit primarily in X rays, normal galaxies, radio galaxies, Seyfert galaxies, a quasar, and an apparently isotropic extragalactic background. There is ample evidence that X-ray emission is characteristic of many of the most interesting objects in astronomy, and the background may have cosmological implications. This should not be too surprising, since significant X-ray emission occurs whenever high energy electrons interact, and high energy electron production is usually associated with explosive phenomena.

The most useful energy range for X-ray observations extends from about 200 eV to perhaps 10 keV. The low energy limit results from the absorption by the interstellar media, which of course varies from object to object; some typical cutoffs are given in Table I. The high energy limit, which is much more arbitrary, results from the usually observed rapidly decreasing emission with increasing energy, and also from the lack of important characteristic emission or absorption features above this energy range. In many cases, however, observations outside of this energy range are required to definitively identify a dominant source mechanism.

Type
Section VI / Spectra of Cosmic X-Ray Sources
Copyright
Copyright © Reidel 1972

References

Alkhazov, G. D., Komar, A. P., and Vorab’ev, ,.: 1967, Nucl. Instr. Meth. 48, 1.CrossRefGoogle Scholar
Angel, J. R. P.: 1969, Nature 226, 734.Google Scholar
Angel, J. R. P. and Weisskopf, M. C.: 1970, Astron. J. 75, 231.Google Scholar
Blake, R. L.: 1970, Adv. X-ray Analysis 13, 352.Google Scholar
Bunner, A. N., Coleman, P. L., Kraushaar, W. L., McCammon, D., Palmieri, T. M., Shilepsky, A. and Ulmer, M.: 1969, Nature 223, 1222.Google Scholar
Byrne, J.: 1962, Proc. Roy. Soc. Edinburgh A66, 33.Google Scholar
Charles, M. W. and Cooke, B. A.: 1968, Nucl. Instr. Meth. 61, 31.Google Scholar
Cottrell, T. L. and Walker, I. C.: 1961, Faraday Soc. Trans. 61, 1591.Google Scholar
Cornell, C. M., Grader, R. J., Harri, J. G., Hill, R. W., Rumble, R. P., and Salmi, D. S.: 1968, Rev. Sci. Instr. 39, 951.Google Scholar
Frankel, R. S. and Aitken, D. W.: 1970, Appl. Spectr. 24, 557.CrossRefGoogle Scholar
Frost, K. J., Rothe, E. D., and Peterson, L. E.: 1966, J. Geophys. Res. 71, 4079.Google Scholar
Gabriel, A. H. and Jordan, C.: 1969, Nature 221, 947.Google Scholar
Giaconni, R. and Rossi, B.: 1960, J. Geophys. Res. 65, 773.CrossRefGoogle Scholar
Giaconni, R., Reidy, W. P., Vaiana, G. S., Van Speybroeck, L. P., and Zehnpfennig, T. F.: 1969, Space Sci. Rev. 9, 3.Google Scholar
Gorenstein, P. and Mickiewicz, S.: 1968, Rev. Sci. Instr. 39, 816.Google Scholar
Gott, R., Parkes, W., and Pounds, K. A.: 1970, Nucl. Instr. Meth. 81, 152.CrossRefGoogle Scholar
Gursky, H. and Zehnpfennig, T.: 1966, Appl. Opt. 5, 875.Google Scholar
Harris, T. J. and Mathieson, E.: 1971, Nucl. Instr. Meth. to be published.Google Scholar
Jaklevis, J. M. and Goulding, F. S.: 1971,I.E.E.E. Trans. Nucl. Sci. NS-18, 187.CrossRefGoogle Scholar
Kesterbaum, H., Angel, J. R. P., and Novick, R.: 1971, Astrophys. J. 164, 187.Google Scholar
Liefeld, R. J., Hanzaly, S., Kirby, T. B., and Mott, D.: 1970, Adv. X-Ray Anal. 13, 373.Google Scholar
Mathieson, E. and Sanford, P. W.: 1964, Proc. Intern. Symp. on Nucl. Electronics, Paris, (1963) (ENEA, 1964), p. 65.Google Scholar
Mathieson, E. and Harris, T. J.: 1970, Nucl. Instr. Meth. 88, 181.CrossRefGoogle Scholar
Novick, R.: 1971, private communication.Google Scholar
Parkes, W., Gott, R., and Pounds, K. A.: 1970a, I.E.E.E. Trans. Nucl. Sci. NS-17, 360.Google Scholar
Parkes, W., Gott, R., and Pounds, K. A.: 1970b, I.E.E.E. Trans. Nucl. Sci. NS-17, 367.Google Scholar
Peterson, L. E., Pelling, R. M., and Matteson, J. L.: 1971, Contribution to the 14th COSPAR Plenary Meeting, Seattle, Washington, June.Google Scholar
Pounds, K. A.: 1971, Nature {Phys. Sci.) 229, 175.CrossRefGoogle Scholar
Ricke, G. R. and Gomes, J. J.: 1969, Rev. Sci. Instr. 40, 227.Google Scholar
Ruderman, I. W. and Michelman, B.: 1968, Isomet. Corp. Report, Present Status of X-Ray Analyzer Crystals.Google Scholar
Schnopper, H. W. and Kalata, K.: 1969, Appl. Phys. Letters 15, 134.CrossRefGoogle Scholar
Smith, D. G. and Pounds, K. A.: 1968, J. E. E. E. Trans. Nucl. Sci. NS-15, 541.Google Scholar
Speer, R. J., Peacock, N. J., Waller, , and Osborne, P. J.: 1970, J. Phys. E (Sci. Instr.) (GB) 3, 143.Google Scholar
Tananbaum, H. and Kellogg, E. M.: 1970, I.E.E.E. Trans. Nucl. Sci. NS-17, 97.Google Scholar
Tucker, W.: 1967, Astrophys. J. 148. 754.Google Scholar
Tucker, W. and Koren, M.: 1971, Astrophys. J. 168, 283.Google Scholar
Van Speybroeck, L. and Chase, R.: 1971, J. Appl. Opt.Google Scholar
Vierling, J., Gilfrich, J. V. Birks, L. S.: 1969, Appl. Spectrosc. (U.S.A) 23, 342.Google Scholar
Walker, A. B. C. and Rugge, H. R.: 1971, private communication.Google Scholar
Wolter, H.: 1952a, Ann. Physik 10, 94.Google Scholar
Wolter, H.: 1952b, Ann. Physik 10, 286.Google Scholar
Zulliger, H. R. and Aitken, D. W.: 1970, I.E.E.E. Trans. Nucl. Sci. NS-17, 187.CrossRefGoogle Scholar
Zulliger, H. R., Middleman, L. M., and Aitken, D. W.: 1969, I.E.E.E. Trans. Nucl. Sci. NS-16, 47.Google Scholar