Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-12T19:50:33.532Z Has data issue: false hasContentIssue false

Supernova Remnant Shocks in an Inhomogeneous Interstellar Medium

Published online by Cambridge University Press:  12 April 2016

Christopher F. McKee*
Affiliation:
Departments of Physics and of Astronomy, University of California, Berkeley CA 94720

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The inhomogeneity of the interstellar medium (ISM) has a profound effect on the propagation of the interstellar shock generated by a supernova and on the appearance of the resulting supernova remnant (SNR). Low mass supernovae produce remnants that interact with the “pristine” ISM, which has density inhomogeneities (clouds) on a wide range of scales. The shock compresses and accelerates the clouds it encounters; inside the blast wave, the clouds are hydrodynamically unstable, and mass is injected from the clouds into the intercloud medium. Embedded clouds interact thermally with the shock also, adding mass to the hot intercloud medium via thermal evaporation or subtracting it via condensation and thermal instability. Mass injection into the hot intercloud medium, whether dynamical or thermal, leads to infrared emission as dust mixes with the hot gas and is thermally sputtered. The remnants of massive supernovae interact primarily with circumstellar matter and with interstellar material which has been processed by the ionizing radiation and wind of the progenitor star. After passing through any circumstellar material which may be present, the shock encounters a cavity which tends to “muffle” the SNR. The remnants of massive supernovae therefore tell us more about the late stages of the evolution of massive stars than about the ISM.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Abbott, D.C. 1982, Ap. J., 263, 723.CrossRefGoogle Scholar
Avedisova, V.S. 1972, Sov. Astron. A.J., 15, 708.Google Scholar
Balbus, S.A. 1985, Ap.J., 291, 518.Google Scholar
Balbus, S.A. 1986, Ap.J., 304, 787.Google Scholar
Balbus, S.A., and McKee, C.F. 1982, Ap.J., 252, 529.Google Scholar
Ballet, J., Arnaud, M., and Rothenflug, R. 1986, Astron. Astrophys., 161, 12.Google Scholar
Batchelor, G. 1967, An Introduction to Fluid Dynamics, (Cambridge: Cambridge University Press).Google Scholar
Begelman, M.C., and McKee, C.F. 1987, in preparation.Google Scholar
Bertoldi, F. 1987, in preparation.Google Scholar
Bertoldi, F., Klein, R., McKee, C.F., and Sandford, M.T. 1987, in preparation.Google Scholar
Bertoldi, F. and McKee, C.F. 1987, in preparation.Google Scholar
Blandford, R.D., and Cowie, L.L. 1982, Ap.J., 260, 625.Google Scholar
Böhringer, H., and Hartquist, T. 1987, Astron. Astrophys., (submitted).Google Scholar
Bychkov, K.V., and Pikel’ner, 1975, Sov. Astr. Letters, 1, 14.Google Scholar
Campbell, P.M. 1984, Phys. Rev. A., 30, 365.Google Scholar
Castor, J., McCray, R., and Weaver, R. 1975, Ap.J. (Letters), 200, L107.Google Scholar
Charles, P., Kahn, S., and McKee, C.F. 1985, Ap.J., 295, 456.CrossRefGoogle Scholar
Chernyi, G.G. 1961, Introduction to Hypersonic Flow, (NY: Academic Press).Google Scholar
Chevalier, R.A. 1975, Ap.J., 200, 698.Google Scholar
Chieze, J.P., and Lazareff, B. 1981, Astron. Astrophys., 95, 194.Google Scholar
Chiosi, C., and Maeder, A. 1986, Ann Rev. Astron. Astrophys., 24, 329.Google Scholar
Chu, Y.H. 1981, Ap.J., 249, 195.Google Scholar
Cowie, L.L., and McKee, C.F. 1977, Ap.J., 211, 135.Google Scholar
Cowie, L.L., McKee, C.F., and Ostriker, J.P. 1981, Ap.J., 247, 908.CrossRefGoogle Scholar
Cowie, L.L., and Songaila, A. 1977, Nature, 266, 501.Google Scholar
Cox, D.P. 1979, Ap.J., 234, 863.Google Scholar
Cox, D.P. 1987, this volume.Google Scholar
Cox, D.P., and Smith, B.W. 1974, Ap.J. (Letters), 189, L105.CrossRefGoogle Scholar
de Jong, T. 1980, in Highlights of Astronomy Vol. 5, ed. Wayman, P.A. (Reidel: Dordrecht), p. 301.Google Scholar
Doroshkevich, A.G., and Zel’dovich, Ya.B. 1981, Sov. Phys. J.E.T.P., 53, 405.Google Scholar
Draine, B.T., and Giuliani, J.L. 1984, Ap.J., 281, 690.Google Scholar
Dwek, E. 1981, Ap.J., 246, 430.Google Scholar
Elmegreen, B.G. 1976, Ap.J., 205, 405.CrossRefGoogle Scholar
Field, G.B. 1965, Ap.J., 142, 531.Google Scholar
Giuliani, J.L. 1984, Ap.J., 277, 605.CrossRefGoogle Scholar
Graham, R., and Langer, W.D. 1973, Ap.J., 179, 469.Google Scholar
Hamilton, A.J.S. 1985, Ap.J., 291, 513.CrossRefGoogle Scholar
Heathcote, S.R., and Brand, P.W.J.L. 1983, M.N.R.A.S., 203, 67.Google Scholar
Hester, J.J., Parker, R.A.R., and Dufour, R.J. 1983, Ap.J., 273, 219.Google Scholar
Hollweg, J.V. 1986, Ap.J., 306, 730.Google Scholar
Hughes, J.P. 1987, Ap.J., 314, 103.Google Scholar
Ikeuchi, S., Habe, A., and Tanaka, Y.D. 1984, M.N.R.A.S., 207, 909.Google Scholar
Kahn, F.D. 1969, Physica, 41, 172.Google Scholar
Kahn, F.D. 1976, Astron. Astrophys., 50, 145.Google Scholar
Krebs, J., and Hillebrandt, W. 1983, Astron. Astrophys., 128, 41.Google Scholar
Landau, L.D., and Lifschitz, E.M. 1959, Fluid Mechanics, (Reading: Addison Wesley).Google Scholar
Lozinskaya, T.A. 1982, Ap. and Sp. Sci., 87, 313.Google Scholar
Luciani, J.F., Mora, P., and Pellat, R. 1985, Phys. Fluids, 28, 835.Google Scholar
Max, C.E., McKee, C.F., and Mead, W.C. 1980, Phys. Fluids, 23, 1620.Google Scholar
McCray, R. 1983, Highlights of Astronomy, 6, 565.Google Scholar
McCray, R., and Snow, T.P. 1979, Ann. Rev. Astron. Astrophys., 17, 213-40.Google Scholar
McCray, R., Stein, R.F., and Kafatos, M. 1975, Ap.J., 196, 565-70.CrossRefGoogle Scholar
McKee, C.F. 1982, in Supernovae: A Survey of Current Research, Rees, M.J. and Stoneham, R.J. (eds.), (Reidel: Dordrecht, Holland), p. 433.Google Scholar
McKee, C.F. 1986, Astrophys. and Sp. Sci., 118, 383.Google Scholar
McKee, C.F., and Cowie, L.L. 1975, Ap.J., 195, 715.Google Scholar
McKee, C.F., and Cowie, L.L. 1977, Ap.J., 215, 213-25.Google Scholar
McKee, C.F., Cowie, L.L., and Ostriker, J.P. 1978, Ap.J. (Letters), 219, L23.CrossRefGoogle Scholar
McKee, C.F., Hollenbach, D., Seab, C., Tielens, A. 1987, Ap. J.,(in press).Google Scholar
McKee, C.F., and Ostriker, J.P. 1977, Ap.J., 218, 148.Google Scholar
McKee, C.F., van Buren, D., and Lazareff, B. 1984, Ap.J. (Letters), 278, L115.Google Scholar
Nittman, J. 1981, M.N.R.A.S., 197, 699.Google Scholar
Nittman, J., Falle, S., and Gaskell, P. 1982, M.N.R.A.S., 201, 833.Google Scholar
Nulsen, P.E.J. 1982, M.N.R.A.S., 198, 1007.Google Scholar
Oettl, R., Hillebrandt, W., and Müller, E. 1985, Astron. Astrophys., 151, 33.Google Scholar
Oort, J.H., and Spitzer, L. 1955, Ap.J., 121, 6.Google Scholar
Ostriker, J.P., and McKee, C.F. 1987, Rev. Mod. Phys. (submitted).Google Scholar
Panagia, N. 1973, Astron. J., 78, 929.Google Scholar
Raymond, J.C, Hester, J.J., Cox, D., Blair, W.P., Fesen, R.A., and Gull, T.R. 1987, Ap. J., submitted.Google Scholar
Reipurth, B. 1983, Astron. Astrophys., 117, 183.Google Scholar
Richtmyer, R.D. 1960, Com. Pure Appl. Math, 13, 297.Google Scholar
Rozyczka, M., and Tenorio-Tagle, G. 1987, Astron. Astrophys., 176, 329.Google Scholar
Sandford, M.T., Whitaker, R.W., and Klein, R.J. 1982, Ap.J., 260, 183.Google Scholar
Sgro, A.G. 1975, Ap.J., 197, 621.Google Scholar
Shull, P., Dyson, J.E., Kahn, F.D., and West, K. 1985, M.N.R.A.S., 212, 799.Google Scholar
Silk, J., and Solinger, A. 1973, Nature, 244, 101.Google Scholar
Smith, D.F. 1986, Ap.J., 302, 836.Google Scholar
Spitzer, L. 1962, Physics of Fully Ionized Gases, (New York: Wiley).Google Scholar
Spitzer, L. 1968a, Diffuse Matter in Space, (New York: Wiley).Google Scholar
Spitzer, L. 1968b, in Stare and Stellar Systems VII: Nebulae and Interstellar Matter ed. Middlehurst, B. and Aller, L. (Chicago: U. Chicago Press), p. 1.Google Scholar
Spitzer, L. 1982, Ap.J., 262, 315.Google Scholar
Spitzer, L., and Ikeuchi, S. 1984, Ap.J., 283, 825.Google Scholar
Steigman, G., Strittmatter, P.A., and Williams, R.E. 1975, Ap.J., 198, 575.Google Scholar
Tenorio-Tagle, G., and Rozyczka, M. 1986, Astron. Astrophys., 155, 120.Google Scholar
Wheeler, J.C., and Levreault, R. 1985, Ap.J. (Letters), 294, L17.Google Scholar
Woodward, P.R. 1976, Ap.J., 207, 484.Google Scholar
Woodward, P.R. 1979, in IAU Symp. 84, The Large Scale Character of the Galaxy, ed. Burton, W.B. (Dordrecht: Reidel), p. 159.Google Scholar