Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T02:31:15.905Z Has data issue: false hasContentIssue false

Symmetric Periodic Orbits in the Anisotropic Kepler Problem

Published online by Cambridge University Press:  12 April 2016

Josefina Casasaya
Affiliation:
Facultat de Matemàtiques, Universitat de Barcelona, Barcelona 7, Spain
Jaume Llibre
Affiliation:
Secció de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The anisotropic Kepler problem has a group of symmetries with three generators; they are symmetries respect to zero velocity curve and the two axes of motion’s plane. For a fixed negative energy level it has four homothetic orbits. We describe the symmetric periodic orbits near these homothetic orbits. Full details and proofs will appear elsewhere (Casasayas-Llibre).

Type
Part IV - Periodic Orbits
Copyright
Copyright © Reidel 1983

References

Casasayas, J. and Llibre, J., The global flow of the anisotropic Kepler problem (to appear).Google Scholar
Devaney, R. (1976), Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc. 218, pp. 89113.CrossRefGoogle Scholar
Devaney, R. (1981), Singularities in Classical Mechanical Systems, Progress in Mathematics vol. 10, Birkhäuser, Basel, pp. 211333.Google Scholar
Gutzwiller, M. (1973), The anisotropic Kepler problem in two dimensions, J. Math. Phys. 14, pp. 139152.Google Scholar