Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T15:57:34.110Z Has data issue: false hasContentIssue false

Towards sub-microarsecond rigid Earth nutation series in the Hamiltonian theory

Published online by Cambridge University Press:  12 April 2016

J. Souchay
Affiliation:
Observatoire de Paris, 61 Avenue de l’Observatoire, 75014 Paris, France
M. Folgueira
Affiliation:
Observatoire de Paris, 61 Avenue de l’Observatoire, 75014 Paris, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nonrigid Earth nutation series adopted by the IAU (International Astronomical Union) are based on the works of Kinoshita (1977) and Wahr (1979). In the first one, the rigid Earth nutation series were calculated by the application of the Hamiltonian canonical equations to the rotation of the rigid and elliptical Earth. In the second one, the transfer function for the nutations of an elliptical, elastic and oceanless Earth with fluid core and a solid inner core was obtained. The nonrigid Earth nutation coefficients were derived from the convolution between Wahr’s transfer function and Kinoshita’s rigid Earth nutation series.

The improvement in the accuracy of the techniques as a Very Long Baseline (VLBI), Lunar Laser Ranging (LLR) and Global Positioning System (GPS) has led in this decade to the extension of Kinoshita’s theory and more precise determination of Wahr’s transfer function. In the present paper and starting from Kinoshita’s work (1977), we present the different steps carried out, during this last decade, to obtain the sub-microarcsecond rigid Earth nutation series REN 2000 from the Hamiltonian study of the rotation of a rigid Earth (Souchay et al., 1999).

Type
Section 2. Improved Definitions and Models
Copyright
Copyright © US Naval Observatory 2000

References

Bizouard, Ch., Folgueira, M. and Souchay, J., 1999a, Proc. Journées 1999. Observatoire de Paris (submitted)Google Scholar
Bizouard, Ch., Folgueira, M. and Souchay, J., 1999b, Proc. IAU Colloquium 178, 613.Google Scholar
Bretagnon, P., Rocher, P. and Simon, J.-L., 1997, Astron. Astrophys., 319, 305.Google Scholar
Bretagnon, P., Francou, G., Rocher, P. and Simon, J.-L., 1998, Astron. Astrophys., 329, 329.Google Scholar
Folgueira, M., Souchay, J. and Kinoshita, H., 1998a, Celest. Mech., 69(4), 373.Google Scholar
Folgueira, M., Souchay, J. and Kinoshita, H., 1998b, Celest. Mech., 70(3), 147.CrossRefGoogle Scholar
Folgueira, M. and Souchay, J., 1999, Proc. Journées 1998. Observatoire de Paris, 178 Google Scholar
Folgueira, M., Bizouard, Ch. and Souchay, J., 1999, Celest. Mech. (submitted).Google Scholar
Hartmann, T. and Soffel, M., 1994, Astron. J., 108, 1115.CrossRefGoogle Scholar
Kinoshita, H., 1977, Celest. Mech., 15, 277.Google Scholar
Kinoshita, H. and Souchay, J., 1990, Celest. Mech., 48, 187.CrossRefGoogle Scholar
Roosbeek, F. and Dehant, V., 1998, Celest. Mech., 70(4), 215.CrossRefGoogle Scholar
Souchay, J. and Kinoshita, H., 1991, Celest. Mech., 52, 45.CrossRefGoogle Scholar
Souchay, J. and Kinoshita, H., 1996, Astron. Astrophys., 312, 1017.Google Scholar
Souchay, J. and Kinoshita, H., 1997, Astron. Astrophys., 318, 639.Google Scholar
Souchay, J., 1998, Astron. J., 116, 503.CrossRefGoogle Scholar
Souchay, J., Loysel, B., Kinoshita, H. and Folgueira, M., 1999, Astron. Astrophys. Suppl. Ser., 135, 111.Google Scholar
Souchay, J., 1999, Proc. Journées 1998. Observatoire de Paris, 109.Google Scholar
Williams, J.G., 1994, Astron. J., 108, 711.CrossRefGoogle Scholar
Williams, J.G., 1995, Astron. J., 110, 1420.CrossRefGoogle Scholar