Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T22:28:13.547Z Has data issue: false hasContentIssue false

Viscosity and Large-Scale Magnetic Fields from Accretion Disc Dynamos

Published online by Cambridge University Press:  12 April 2016

Christopher A. Tout*
Affiliation:
Konkoly Observatory of the Hungarian Academy of Sciences, H–1525 Budapest, P.O.B. 67, Hungary.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review those processes associated with accretion discs that are probably influenced by magnetic fields, specifically, accretiondisc viscosity, energy dissipation and jet formation. We consider how magnetic instabilities in the disc can lead to a self-sustaining dynamical dynamo and how this is manifested as magnetohydrodynamic turbulence in numerical simulations. We show that currently these models do not fit with observational constraints imposed by dwarf-nova outbursts. We also show that the drop in ionisation fraction does not lead to the apparently necessary drop in viscosity in quiescent cataclysmic variable discs. Large-scale magnetic fields are required to launch and collimate jets form discs. We describe an inverse cascade process that can construct sufficient large-scale field from small-scale field generated by a dynamo.

Type
Part 5. Magnetic Fields and Viscosity
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Armitage, P.J., Livio, M. & Pringle, J.E.P. 1996, ApJ, 457, 332 Google Scholar
Balbus, S.A. & Hawley, J.F. 1991, ApJ, 376, 214 Google Scholar
Balbus, S.A. & Hawley, J.F. 1992, ApJ, 392, 662 Google Scholar
Bardou, A. & Heyvaerts, J. 1996, A&A, 307, 1009 Google Scholar
Brandenburg, A., Nordlund, Å., Stein, R.F. & Torkelsson, U. 1995, ApJ, 446, 741 CrossRefGoogle Scholar
Brandenburg, A., Nordlund, Å., Stein, R.F. & Torkelsson, U. 1996, ApJ, 458, L45 Google Scholar
Cannizzo, J.K., Shafter, A.W. & Wheeler, J.C. 1988, ApJ, 333, 227 Google Scholar
Ghosh, P. & Lamb, F.K. 1979, ApJ, 232, 259 Google Scholar
Horiuchi, T., Matsumoto, R., Hanawa, T. & Shibata, K. 1988, PASJ, 40, 147 Google Scholar
Hoshi, R. 1979, Prog. Theor. Phys., 61, 1307 Google Scholar
Königl, A. 1989, ApJ, 342, 208 Google Scholar
Königl, A. & Wardle, M. 1996, MNRAS, 279, L61 Google Scholar
Laughlin, G. & Bodenheimer, P. 1994, ApJ, 436, 335 Google Scholar
Lin, D.N.C., Papaloizou, J.C.B. & Faulkner, J. 1985, MNRAS, 212, 105 Google Scholar
Lubow, S.H., Papaloizou, J.C.B. & Pringle, J.E. 1994a, MNRAS, 267, 235 Google Scholar
Lubow, S.H., Papaloizou, J.C.B. & Pringle, J.E. 1994b, MNRAS, 268, 1010 CrossRefGoogle Scholar
Lynden-Bell, D. 1969, Nature, 223, 690 Google Scholar
Pacyński, B. 1978, Acta Astr., 28, 91 Google Scholar
Petschek, A.G. 1964, in The Physics of Solar Flares, Hess, W.N., Greenbelt: NASA, 425 Google Scholar
Pringle, J.E. 1993, in Astrophysical Jets, Burgarella, D., Livio, M. & C.P.O’Dea, , Cambridge University Press, 1 Google Scholar
Regős, E. 1996a, MNRAS, in pressGoogle Scholar
Regős, E. 1996b, MNRAS, in pressGoogle Scholar
Różycka, M., Turner, N.J. & Bodenheimer, P. 1994, MNRAS 276, 1179 Google Scholar
Rutten, R.J.M., van Paradijs, J. & Tinbergen, J. 1992, A&A, 260, 213 Google Scholar
Shakura, N.I. & Sunyaev, R.A. 1973, A&A, 24, 337 Google Scholar
Smak, J. 1994, Acta Astr., 44, 265 Google Scholar
Spruit, H.C. 1996 in Evolutionary Processes in Binary Stars, Wijers, R.A.M.J., Davies, M.B. & Tout, C. A., Dordrecht: Kluwer, 249 Google Scholar
Stone, J.M. & Balbus, S.A. 1996, ApJ, 464, 364 Google Scholar
Stone, J.M., Hawley, J.F., Gammie, C.F. & Balbus, S.A. 1996, ApJ, 463, 656 Google Scholar
Tout, C.A. 1996, in Cataclysmic Variables and Related Objects, Evans, A. & Wood, J.H., Dordrecht: Kluwer, 97 Google Scholar
Tout, C.A. & Pringle, J.E. 1992, MNRAS, 259, 604 Google Scholar
Tout, C.A. & Pringle, J.E. 1996, MNRAS, 281, 219 Google Scholar
Tout, C.A., Pringle, J.E. & la Dous, C. 1993, MNRAS, 265, L5 Google Scholar