Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T02:45:52.577Z Has data issue: false hasContentIssue false

Raman spectroscopic analysis of the calcium oxalate producing extremotolerant lichen Circinaria gyrosa

Published online by Cambridge University Press:  17 October 2013

U. Böttger*
Affiliation:
German Aerospace Center DLR e.V, Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany
J. Meessen
Affiliation:
Institut für Botanik, Heinrich-Heine-Universität, Universitätsstr.1, 40225-Düsseldorf, Germany
J. Martinez-Frias
Affiliation:
Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
H.-W. Hübers
Affiliation:
German Aerospace Center DLR e.V, Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstr. 36, 10623 Berlin, Germany
F. Rull
Affiliation:
Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
F. J. Sánchez
Affiliation:
Instituto Nacional de Técnica Aeroespacial (INTA), Ctra. de Ajalvir km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
R. de la Torre
Affiliation:
Instituto Nacional de Técnica Aeroespacial (INTA), Ctra. de Ajalvir km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
J.-P. de Vera
Affiliation:
German Aerospace Center DLR e.V, Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany

Abstract

In the context of astrobiological exposure and simulation experiments in the BIOMEX project, the lichen Circinaria gyrosa was investigated by Raman microspectroscopy. Owing to the symbiotic nature of lichens and their remarkable extremotolerance, C. gyrosa represents a valid model organism in recent and current astrobiological research. Biogenic compounds of C. gyrosa were studied that may serve as biomarkers in Raman assisted remote sensing missions, e.g. ExoMars. The surface as well as different internal layers of C. gyrosa have been characterized and data on the detectability and distribution of β-carotene, chitin and calcium oxalate monohydrate (whewellite) are presented in this study. Raman microspectroscopy was applied on natural samples and thin sections. Although calcium oxalates can also be formed by rare geological processes it may serve as a suitable biomarker for astrobiological investigations. In the model organism C. gyrosa, it forms extracellular crystalline deposits embedded in the intra-medullary space and its function is assumed to balance water uptake and gas exchange during the rare, moist to wet environmental periods that are physiologically favourable. This is a factor that was repeatedly demonstrated to be essential for extremotolerant lichens and other organisms. Depending on the decomposition processes of whewellite under extraterrestrial environmental conditions, it may not only serve as a biomarker of recent life, but also of past and fossilized organisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cottin, H. (2011). Expose, vol. 1, pp. 558560. Springer, Berlin, Heidelberg.Google Scholar
de la Torre, R., Sancho, L.G., Pintado, A., Scherer, K., Facius, R., Deutschmann, U., Reina, M., Baglioni, P. & Demets, R. (2004). Studies of lichens from high mountain regions in outer space: the BIOPAN experiment. In Proc. of the third European Workshop on Astrobiology. Mars: The Search for Life. ESA SP-545, pp. 193194.Google Scholar
de la Torre Noetzel, R., Sancho, L.G., Pintado, A., Rettberg, P., Rabbow, E., Panitz, C., Deutschmann, U., Reina, M. & Horneck, G. (2007). BIOPAN experiment LICHENS on the Foton M2 mission: pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. Adv. Space Res. 40, 16651671.CrossRefGoogle Scholar
de la Torre Noetzel, R. et al. (2010). Survival of lichens and bacteria exposed to outer space conditions. Results of the Lithopanspermia experiments. ICARUS 208, 735748.CrossRefGoogle Scholar
de Vera, J.-P. (2012). Lichens as survivors in space and on Mars. Fungal Ecol. 5, 472479.CrossRefGoogle Scholar
de Vera, J.-P., Horneck, G., Rettberg, P. & Ott, S. (2003). The potential of the lichen symbiosis to cope with the extreme conditions of outer space I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. Int. J. Astrobiol. 1, 285293.CrossRefGoogle Scholar
de Vera, J.-P., Horneck, G., Rettberg, P. & Ott, S. (2004a). In the context of panspermia: May lichens serve as shuttles for their bionts in space? In Proc. of the third European Workshop on Astrobiology. Mars: The Search for Life. ESA SP-545, pp. 197198.Google Scholar
de Vera, J.-P., Horneck, G., Rettberg, P. & Ott, S. (2004b). The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Adv. Space Res. 33, 12361243.CrossRefGoogle ScholarPubMed
de Vera, J.-P., Möhlmann, D., Lorek, A., Wernecke, R. & Ott, S. (2010). Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. Astrobiology 10, 215227.CrossRefGoogle ScholarPubMed
de Vera, J.-P. et al. (2012). Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planet. Space Sci. 74, 103110.CrossRefGoogle Scholar
Edwards, H., Russell, N. & Wynn-Williams, D. (1997). Fourier transform Raman spectroscopic and scanning electron microscopic study of cryptoendolithic lichens from Antarctica. J. Raman Spectrosc. 28, 685690.3.0.CO;2-X>CrossRefGoogle Scholar
Edwards, H., Moody, C.D., Villar, S. & Wynn-Williams, D. (2005). Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander Missions. ICARUS 174, 560571.CrossRefGoogle Scholar
Ehrlich, H., Maldonado, M., Spindler, K.-D., Eckert, C., Hanke, T., Born, R., Goebel, C., Simon, P., Heinemann, S. & Worch, H. (2007). First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J. Exp. Zoolog. (Mol. Dev. Evol.) 308B, 347356.CrossRefGoogle Scholar
Frost, R., Yang, J. & Ding, Z. (2003). Raman and FTIR spectroscopy of natural oxalates: implications for the evidence of life on Mars. Chinese Science Bulletin 48(17), 18441852.CrossRefGoogle Scholar
Hoefs, J. (1969). Natural calcium oxalate with heavy carbon. Nature 223, 396.CrossRefGoogle Scholar
Honegger, R. (2009). Lichen-Forming Fungi and Their Photobionts, vol. 5 of The Mycota, pp. 307333. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-87407-2_16. URL http://dx.doi.org/10.1007/978-3-540-87407-2_16.Google Scholar
Lange, O., Green, H., Reichenberger, T.G.A., Hesbacher, S. & Proksch, P. (1997). Do secondary substances in the thallus of a lichen promote CO2 diffusion and prevent depression of net photosynthesis at high water content? Oecologia 112, 13.CrossRefGoogle ScholarPubMed
Meeßen, J., Sánchez, F. J., Brandt, A., Balzer, E.-M., de la Torre, R., Sancho, L. G., de Vera, J.-P. & Ott, S. (2013). Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics. Orig. Life Evol. Biosph. 43(3), 283303.CrossRefGoogle ScholarPubMed
Onofri, S. et al. (2012). Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12, 508516.CrossRefGoogle ScholarPubMed
Pizzolato, P. (1964). Histochemical recognition of calcium oxalate. J Histochem Cytochem 12, 333336.CrossRefGoogle ScholarPubMed
Rabbow, E. et al. (2009). EXPOSE, an astrobiological exposure facility on the international space station – from proposal to flight. Orig. Life Evol. Biosph. 39, 581598.CrossRefGoogle ScholarPubMed
Rabbow, E. et al. (2012). EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12, 374386.CrossRefGoogle ScholarPubMed
Raggio, J., Pintado, A., Ascaso, C., de la Torre, R., de los Ríos, A., Wierzchos, J. & Sancho, L. (2011). Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa . Astrobiology 11, 281292.CrossRefGoogle ScholarPubMed
Sánchez, F., Mateo-Martí, E., Raggio, J., Meeßen, J., Martínez-Frías, J., Sancho, L., Ott, S. & de la Torre, R. (2012). The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions – a model test for the survival capacity of an eukaryotic extremophile. Planet. Space Sci. 72, 102110.CrossRefGoogle Scholar
Sancho, L. (2009). Lichens, new and promising material from experiments in astrobiology. Fungal Biol. Rev. 22, 103109.CrossRefGoogle Scholar
Sancho, L., Schroeter, B. & del Prado, R. (2000 ). Ecophysiology and morphology of the globular erratic lichen Aspicilia fruticulosa, Flag. from Central Spain. Bibliotheca Lichenologica 75, 137147.Google Scholar
Sancho, L., de la Torre, R., Horneck, G., Ascaso, C., de los Ríos, A., Pintado, A., Wierzchos, J. & Schuster, M. (2007). Lichens survive in space: results from 2005 LICHENS experiment. Astrobiology 7, 443454.CrossRefGoogle ScholarPubMed
Sancho, L., de la Torre, R. & Pintado, A. (2008). Lichens, new and promising material from experiments in astrobiology. Fungal Biol. Rev. 22, 103109.CrossRefGoogle Scholar
Shippey, T.A. (1980). Vibrational studies of calcium oxalate monohydrate (Whewellite) and an anhydrous phase of calcium oxalate. J. Mol. Struct. 63, 157166.CrossRefGoogle Scholar
Sitte, P., Weiler, E.W., Kadereit, J.W., Bresinsky, A. & Körner, C. (2002). Strasburger, Lehrbuch der Botanik, 35th edn, p. 85. Spektrum akademischer Verlag, Heidelberg.Google Scholar
Sohrabi, M. (2012). Taxonomy and phylogeny of the manna lichens and allied species (Megasporaceae). PhD Thesis, Publications in Botany from the University of Helsinki. http://urn.fi/URN:ISBN:978-952-10-7400-4.Google Scholar
Steele, A. et al. (2005). The Astrobiology Field Laboratory. Unpublished white Paper. 72 p, posted December 2005 by the Mars Exploration Program Analysis Group (MEPAG) at URL http://mepag.jpl.nasa.gov/reports/index.html Google Scholar
Thomas-Keprta, K.L., Bazylinski, B.A., Kirchvink, J.L., Clemett, S.J., McKay, D.S., Wentworth, S.J., Vali, H., Gibson, J.E.K. & Romanek, C.S. (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim. Cosmochim. Acta 64, 40494081.CrossRefGoogle ScholarPubMed
Vassilev, S. & Vassilev, C. (1996). Occurrence, abundance and origin of minerals in coals and coal ashes. Fuel Process. Technol. 48, 85106.CrossRefGoogle Scholar
Vitek, P., Edwards, H.G.M., Jehlicka, J., Ascaso, C., De Los Ríos, A., Valea, S., Jorge-Villar, S., Davila, A.F. & Wierzchos, J. (2010). Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Phil. Trans. R. Soc. A 368, 32053221.CrossRefGoogle ScholarPubMed
Ward, C. (2002). Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 50, 135168.CrossRefGoogle Scholar
WITec focus innovations. alpha300 (2008). URL http://www.witec.de/en/products/raman/alpha300r/ Google Scholar
Zák, K. & Skála, R. (1993). Carbon isotopic composition of whewellite (CaC2O4·H 2 O) from different geological environments and its significance. Chem. Geol. 106, 123131.CrossRefGoogle Scholar