Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T10:27:52.816Z Has data issue: false hasContentIssue false

Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

Published online by Cambridge University Press:  18 November 2014

Katja Neuberger*
Affiliation:
Technische Universität München, Center of Life and Food Sciences, Alte Akademie 8 D-85354 Freising, Germany
Astrid Lux-Endrich
Affiliation:
Technische Universität München, Center of Life and Food Sciences, Alte Akademie 8 D-85354 Freising, Germany
Corinna Panitz
Affiliation:
German Aerospace Center DLR, Institute of Aerospace Medicine, Radiation Biology Section, D-51170 Köln, Germany RWTW/Klinikum Aachen, Institut für Pharmakologie und Toxikologie, Wendlingweg 2, D-52074 Aachen, Germany
Gerda Horneck
Affiliation:
German Aerospace Center DLR, Institute of Aerospace Medicine, Radiation Biology Section, D-51170 Köln, Germany

Abstract

In the space experiment ‘Spores in artificial meteorites’ (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10−7–10−4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m−2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from −25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antheunisse, J., De Bruin-Tol, J.W. & Van Der Pol-Van Soest, M.E. (1981). Antonie Van Leeuwenhoek 47, 539545.Google Scholar
Arrhenius, S. (1903). Die Umschau 7, 781785.Google Scholar
Berger, T., Hajek, M., Bilski, P. & Reitz, G. (2014). Int. J. Astrobiol., Published online 30 10 2014 , DOI: http://dx.doi.org/10.1017/S1473550414000548.Google Scholar
Cadet, J., Anselmino, C., Douki, T. & Voituriez, L. (1992). J. Photochem. Photobiol. B: Biol. 15, 277298.Google Scholar
Clark, B.C. (2001). Orig. Life Evol. Biosph. 31, 185197.Google Scholar
de la Torre, R. et al. (2010). Icarus 208, 735748.Google Scholar
Dose, K., Bieger-Dose, A., Dillmann, R., Gill, M., Kerz, O., Klein, A., Meinert, H., Nawroth, T., Risi, S. & Stridde, C. (1995). Adv. Space Res. 16, (8)119(8)129.Google Scholar
Dose, K., Bieger-Dose, A., Dillmann, R., Gill, M., Kerz, O., Klein, A. & Stridde, C. (1996). Adv. Space Res. 18, (12)51(12)60.Google Scholar
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. & Lorito, M. (2004). Nat. Rev. Microbiol. 2, 4356.Google Scholar
Heckly, R.J. (1978). Effects of oxygen on dried organisms. In Dry Biological Systems, ed. Crowe, J.H. & Clegg, J.S., pp. 257278. Academic Press, New York.Google Scholar
Horneck, G. (1995). Planet. Space Sci. 43, 189217.Google Scholar
Horneck, G. (1998). Adv. Space Res. 22, 317326.Google Scholar
Horneck, G. & Brack, A. (1992). In Advances in Space Biology and Medicine, Vol. 2, ed. Bonting, S.L, pp. 229262. JAI Press, Greenwich, CT.Google Scholar
Horneck, G., Bücker, H. & Reitz, G. (1994). Adv. Space Res. 14, (10)41(10)45.Google Scholar
Horneck, G., Eschweiler, U., Reitz, G., Wehner, J., Willimek, R. & Strauch, K. (1995). Adv. Space Res. 16, (8)105(8)118.Google Scholar
Horneck, G. et al. (1999). ESA Special Publ. SP-433, 459468.Google Scholar
Horneck, G., Mileikowsky, C., Melosh, H.J., Wilson, J.W., Cucinotta, F.A. & Gladman, B. (2002). Viable transfer of microorganisms in the solar system and beyond. In The Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C., pp. 5576. Springer, Berlin.Google Scholar
Jennings, D.H. & Lysek, G. (1999). Fungal Biology. Understanding the Fungal Life-style, Second Edition. BIOS Scientific Publishers, Oxford.Google Scholar
Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Valtonen, M. & Zheng, J.Q. (2000). Icarus 145, 391427.Google Scholar
Nicholson, W.L., Schuerger, A.C. & Setlow, P. (2005). Mutat. Res. 571, 249264.Google Scholar
Nicholson, W.L. et al. (2011). Astrobiology 11, 951958.Google Scholar
Onofri, S. et al. (2012). Astrobiology 12, 508516.Google Scholar
Panitz, C., Horneck, G., Rabbow, E., Rettberg, P., Moeller, R., Cadet, J., Douki, T. & Reitz, G. (2014). Int. J. Astrobiol. (this issue), Published online: 01 08 2014 , doi: http://dx.doi.org/10.1017/S1473550414000251 Google Scholar
Pruscha, H. (2006). Statistisches Methodenbuch. Springer, Heidelberg.Google Scholar
Rabbow, E., Rettberg, P., Panitz, C., Drescher, J., Horneck, G. & Reitz, G. (2005). Adv. Space Res. 36, 297302.Google Scholar
Rabbow, E. et al. (2009). Orig. Life Evol. Biosph. 39, 581598.CrossRefGoogle Scholar
Rabbow, E. et al. (2012). Astrobiology 12, 374386.Google Scholar
Rabbow, E. et al. (2014). The astrobiological mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol. (this issue), Published online: 28 08 2014 , DOI: http://dx.doi.org/10.1017/S1473550414000202.Google Scholar
Richter, H. (1865). Zur Darwinschen Lehre. Schmidts Jahrbuch Ges. Med. 126, 243249.Google Scholar
Rifai, M.A. (1969). Mycol. Papers 116, 156.Google Scholar
Schulte, W., Baglioni, P. & Demets, R. (2001). Exobiology research platform. First European Workshop for Exo-/Astrobiology, 2001 Noordwijk. ESA-ESTEC, 183186.Google Scholar
Smith, (1993). Tolerance to Freezing and Thawing. In Stress Tolerance of Fungi, ed. Jennings, D.H., pp. 145170. Marcel Dekker, New York.Google Scholar
Sterflinger, K. (1998). Antonie Van Leeuwenhoek 4, 271281.Google Scholar
Strauss, G.H. (1991). Mutat. Res. 252, 115.Google Scholar
Thevelein, (1984). Microb. Rev. 48, 4259.Google Scholar