Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T08:57:11.783Z Has data issue: false hasContentIssue false

Adsorbed water and thin liquid films on Mars

Published online by Cambridge University Press:  24 February 2012

C. S. Boxe*
Affiliation:
Earth and Space Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA Department of Physical, Environmental and Computer Science, Medgar Evers College-City University of New York, 1650 Bedford Avenue, Brooklyn, NY 11235
K. P. Hand
Affiliation:
Earth and Space Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
K. H. Nealson
Affiliation:
Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
Y. L. Yung
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
A. S. Yen
Affiliation:
Earth and Space Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
A. Saiz-Lopez
Affiliation:
Earth and Space Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA Laboratories for Atmospheric and Climate Sciences, CSIC, Toledo, Spain

Abstract

At present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001–0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6–66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013 and 6.50×1013 litres of waters, respectively, 55–325 times larger than Mars’ atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104–1.5×106 litres of water, which is 6.0×10−7–4.0×10−4%, respectively, of a 10 pr μm water vapour column, and 3.0×10−6–4.0×10−4% and 6.0×10−6–8.0×10−4%, respectively, of the Martian atmospheric water vapour inventory. Thin liquid film thicknesses on/in subsurface ice were investigated via two scenarios: (i) under the idealistic case where it is assumed that the diurnal thermal wave is equal to the temperature of ice tens of centimetres below the surface, allowing for such ice to experience temperatures close to 273 K and (ii) under the, likely, realistic scenario where the diurnal thermal wave allows for the maximum subsurface ice temperature of 235 K at 1 m depth between 30°N and 30°S. Scenario 1 yields thin liquid film thicknesses ranging from 11 to 90 nm; these amounts represent 4×106–3.0×107 litres of water. For pure water ice, Scenario 2 reveals that the thickness of thin liquid films contained on/within Martian subsurface is less than 1.2 nm, several molecular layers thick. Conversely, via the effect of impurities at 235 K allows for a thin liquid film thickness on/within subsurface ice of 0.5 nm, corresponding to 6.0×104 litres of water. The existence of thin films on Mars is supported by data from the Mars Exploration Rovers (MERs) Spirit and Opportunity's Alpha Proton X-ray Spectrometer instrumentation, which have detected increased levels of bromine beneath the immediate surface, suggestive of the mobilization of soluble salts by thin films of liquid water towards local cold traps. These findings show that biological activity on the Martian surface and subsurface is not limited by nanometre dimensions of available water.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbatt, J.P.D., Beyer, K.D., Fucaloro, A.F., Mcmahon, J.R., Wooldridge, P.J., Zhang, R. & Molina, M.J. (1992). J. Geophys. Res. A 97, 1581915826.CrossRefGoogle Scholar
Anderson, D.M. (1968). Isr. J. Chem. 6, 349355.CrossRefGoogle Scholar
Anderson, D.M., Gaffney, E.S. & Low, P.F. (1967). Science 155, 319322.CrossRefGoogle Scholar
Anderson, D.M. & Tice, A.R. (1979). J. Mol. Evol. 14, 3338.CrossRefGoogle Scholar
Ballou, E.V., Wood, P.C., Wydeven, T., Lehwalt, M.E. & Mack, R.E. (1978). Nature 271, 644645.CrossRefGoogle Scholar
Bandfield, J.L. (2007). Nature 447, 64.CrossRefGoogle Scholar
Benatov, L. & Wettlaufer, J.S. (2004). Phys. Rev. E 70, doi:10.1103/PhysRevE.70.061606, 061606-1-061606-7.CrossRefGoogle Scholar
Boxe, C.S. (2005). Nitrate photochemistry and interrelated chemical phenomena in ice: Influence of the quasi-liquid layer (QLL), Ph.D. Thesis, California Institute of Technology.Google Scholar
Boxe, C.S. & Saiz-Lopez, A. (2009). Polar Sci. 3, 7381.CrossRefGoogle Scholar
Boxe, C.S. et al. (2003). J. Phys. Chem. A 107, 1140911413.CrossRefGoogle Scholar
Boxe, C.S. & Saiz-Lopez, A. (2008). Atmos. Chem. Phys. 8, 48554864.CrossRefGoogle Scholar
Boxe, C.S. et al. (2005). J. Phys. Chem. A 109, 85208525.CrossRefGoogle Scholar
Boxe, C.S. et al. (2006). J. Phys. Chem. A 110, 76137616.CrossRefGoogle Scholar
Boynton, et al. (2009). Science. 325, 61, doi:10.1126/science.1172768.CrossRefGoogle Scholar
Chevrier, V. et al. (2007). Geophys. Res. Lett. 34, L02203, doi:10.1029/2006GL028401.CrossRefGoogle Scholar
Chuvilian, E.M., Ershov, E.D. & Smirnova, O.G. (1998). Seventh International Conf. (Proc.) 55, 167171.Google Scholar
Dash, J.G., Rempel, A.W. & Wettlaufer, J.S. (2006). Rev. Mod. Phys. 78, 695741.CrossRefGoogle Scholar
Derjaguin, B.V. & Landau, L. (1948). Acta Physicochim. U.R.S.S. 14, 633.Google Scholar
Döppenschmidt, A. & Butt, H.-J. (2000). Langmuir 16, 67096714.CrossRefGoogle Scholar
Dubowski, Y., Colussi, A.J., Boxe, C.S. & Hoffmann, M.R. (2002). J. Phys. Chem. A 106, 69676971.CrossRefGoogle Scholar
Elbaum, M., Lipson, S.G. & Dash, J.G. (1993). J. Cryst. Growth 129, 491505.CrossRefGoogle Scholar
Fairen, A.G., Davila, A.F., Gago-Duport, L., Amils, R. & McKay, C.P. (2009). Nature 459, 401404.CrossRefGoogle Scholar
Faraday, M. (1850). Royal Institution Discourse, June 7, 1850; M. Faraday, Experimental Researches in Chemistry and Physics, Taylor and Francis, New York.Google Scholar
Gellert, R. et al. (2006). J. Geophys. Res. 111, E02S05, doi:10.1029/2005JE002555.Google Scholar
Haberle, R.M. et al. (2001). J. Geophys. Res. 106, 2331723326.CrossRefGoogle Scholar
Hecht, M.H. (2002). Icarus 156, 373386.CrossRefGoogle Scholar
Hecht, M.H. et al. (2009). Science. 325, 64, doi:10.1126/science.1172466.CrossRefGoogle Scholar
Henderson, M.A. (2002). Surf. Sci. 46, 1308.CrossRefGoogle Scholar
Huber, H. et al. (2002). Nature 417, 6367.CrossRefGoogle Scholar
Huthwelker, T., Ammann, M., & Peter, T. (2006). Chem. Rev. 106, 13751444. B.CrossRefGoogle Scholar
Jakosky, B.M. et al. (2005). Icarus 175, 5867.CrossRefGoogle Scholar
Jakosky, M., Nealson, K.H., Bakermans, C., Ley, R.E. & Mellon, M.T. (2003). Astrobiology 3, 343350.CrossRefGoogle Scholar
Kieffer, H.H. & Zent, A.P. (2002). Quasi-periodic climate change on Mars. In Mars, ed. Kieffer, H.H., Jakosky, B.M., Snyder, C.W. & Matthews, M.S., pp. 11801218, University Of Arizona Press, Tucson.Google Scholar
Kuznetz, L.H. & Gan, D.C. (2002). Astrobiology 2, 183195.CrossRefGoogle Scholar
Lobitz, B., Wood, B.L., Averner, M.M. & McKay, C.P. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 21322137.CrossRefGoogle Scholar
McNeill, V.F., Loerting, T., Geiger, F.M., Trout, B.L. & Molina, M.J. (2006). Proc. Natl. Acad. Sci. U.S.A. 103, 94229427.CrossRefGoogle Scholar
Mellon, M.T., Feldman, W.C. & Prettyman, T.H. (2004). Icarus 169, 324340.CrossRefGoogle Scholar
Mohlmann, D.T.F. (2003). Int. J. Astrobiol. 2, 213216.CrossRefGoogle Scholar
Mohlmann, D.T.F. (2004). Icarus 168, 318323.CrossRefGoogle Scholar
Mohlmann, D.T.F. (2008). Icarus 195, 131139.CrossRefGoogle Scholar
Mohlmann, D.T.F. (2009). Cryobiology 58, 256261.CrossRefGoogle Scholar
Mohlmann, D.T.F. (2010a). Icarus 207, 140148.CrossRefGoogle Scholar
Mohlmann, D.T.F. (2010b). Icarus 9, 4549.Google Scholar
Molina, M.J. (1994). The probable role of stratospheric ‘ice’ clouds: Heterogeneous chemistry of the ‘ozone hole.’ In The Chemistry of the Atmosphere: The Impact of Global Change, ed. Calvert, J.G., pp. 2738, Blackwell Scientific Publications, Boston.Google Scholar
Mooney, R.W., Keenan, A.G. & Wood, L.A. (1952). Absorption of water vapor by montmorillonite. J. Am. Soc. 74, 13671374.CrossRefGoogle Scholar
Nersesova, S.A. (1950). Dokl. Akad. Nauk SSSR LXXV (6), 845846.Google Scholar
Paige, D.A. (2005). Science 307, 1575.CrossRefGoogle Scholar
Pavlov, A.K., Shelegedin, V.N., Vdovina, M.A. & Pavlov, A.A. (2010). Int. J. Astrobiol. 9, 5158.CrossRefGoogle Scholar
Price, P.B. (2007). Microbiol. Ecol. 59, 217231.CrossRefGoogle Scholar
Richardson, M.I. & Mischna, M.A. (2005). J. Geophys. Res. 110, doi:10.1029/2004JE002367.Google Scholar
Rivkina, E.M., Friedmann, E.I. & McKay, C.P. (2000). Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66, 32303233.CrossRefGoogle ScholarPubMed
Sadtchenko, V. & Ewing, G.E. (2002). J. Chem. Phys. 116, 46864697.CrossRefGoogle Scholar
Saiz-Lopez, S. & Boxe, C.S. (2008). Atmos. Chem. Phys. Discuss. 8, 29532976.Google Scholar
Smith, P.H. et al. (2009). Science 325, 58, doi:10.1126/science.1172399.CrossRefGoogle Scholar
Smith, M.D., Wolff, M.J., Clancy, R.T. & Murchie, S.L. (2009). J. Geophys. Res. 114, E00D03, doi:10.1029/2008JE003288.Google Scholar
Sun, D.-W. (1998). Drying Technol. 16, 779797.CrossRefGoogle Scholar
Suter, M.T., Anderson, P.U. & Pettersson, J.B.C. (2006). J. Chem. Phys. 125, 174704-1–173704-6.CrossRefGoogle Scholar
Sutter, B., Sriwatanapongse, W., Quinn, R., Klug, C. & Zent, A. (2002). Lunar Planet. Sci. XXXIII, 1682.Google Scholar
Thiel, P.A. & Madey, T.E. (1987). Surf. Sci. 7, 211385.CrossRefGoogle Scholar
Tokano, T. (2005). Water cycle in the atmosphere and shallow subsurface. In Water on Mars and Life: Adv. Astrobiol. Biogeophys, ed. Tetsuya, Tokano pp. 191216.CrossRefGoogle Scholar
Verwey, E.J.W. & Overbeek, J.Th.G. (1941). Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.Google Scholar
Wettlaufer, J.S. (1999) Phys. Rev. Lett. 82, 25162519.CrossRefGoogle Scholar
Williams, P. & Smith, M. (1989). The Frozen Earth: Fundamentals of Geocryology, Chapter 8. Cambridge University Press, Cambridge.Google Scholar
Yen, A.S. et al. (2005). Nature 436, 49, doi:10.1038/nature03637.CrossRefGoogle Scholar
Zent, A. (2008). Icarus 196, 385408.CrossRefGoogle Scholar