Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T11:00:57.864Z Has data issue: false hasContentIssue false

Thermodynamics of the prokaryote nuclear zone

Published online by Cambridge University Press:  08 July 2008

F.N. Braun
Affiliation:
University of Tromsø, N-9037 Tromsø, Norway e-mail: nicholas.braun@fagmed.uit.no

Abstract

In studying the functional and evolutionary significance of compartmentation in biology, it is instructive to consider its thermodynamic context as a conceptual centrepiece of entropy and phase transitions. Here we focus specifically on compartmentation at the intracellular level of microbial organellar cytology. Via a colloid-statistical argument, supplemented with order of magnitude estimates for the relevant physical quantities, we find that the DNA-containing nucleoid of prokaryotes presents a plausible nucleation site for phase-transitional behaviour, provided the genome exceeds some threshold size of the order of 10 Mbp. Large genome size seems capable in this respect of seeding compartmentation effects such as the nuclear envelope of Planctomycetes bacteria, which is widely regarded as a possible precursor to the nuclear envelope of eukaryotes.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braun, F.N. (2006). FEBS Lett. 580, 720.CrossRefGoogle Scholar
Braun, F.N. & Bergenholtz, J. (2007). J. Phys. Chem. B 111, 11626.CrossRefGoogle Scholar
Braun, F.N., Paulsen, S., Sear, R.P. & Warren, P.B. (2005). Phys. Rev. Lett. 94, 178105.CrossRefGoogle Scholar
Fuerst, J.A. (2006). Complex Intracellular Structures in Prokaryotes, ed. Shively, J. M.Springer, Berlin.Google Scholar
Goodsell, D.S. (1991). Trends Biochem. Sci. 16, 203.CrossRefGoogle Scholar
Lewis, P.J., Thaker, S.D. & Errington, J. (2000). EMBO J. 19, 710.CrossRefGoogle Scholar
Long, M.S., Jones, C.D., Helfrich, M.R., Mangeney-Slavin, L.K. & Keating, C.D. (2005). Proc. Natl Acad. Sci. 102, 5920.CrossRefGoogle Scholar
Lucht, J.M. & Bremer, E. (1994). FEMS Microbiol. Rev. 14, 3.CrossRefGoogle Scholar
Odijk, T. (1998). Biophys. Chem. 73, 23.CrossRefGoogle Scholar
Sear, R.P. (2005). J. Phys. Cond. Matt. 17, 3997.CrossRefGoogle Scholar
Sear, R.P. and Cuesta, J.A. (2003). Phys. Rev. Lett. 91, 245701.CrossRefGoogle Scholar
Sollich, P. (2002). J. Phys. Cond. Matt. 14, R79.CrossRefGoogle Scholar
Thurston, G.M. (2007). Proc. Natl Acad. Sci. 104, 18877.CrossRefGoogle Scholar
Walter, H. & Brooks, D.E. (1995). FEBS Lett. 361, 135.CrossRefGoogle Scholar
Zimmerman, S.B. (2006). J. Struct. Biol. 153, 160.CrossRefGoogle Scholar
Zimmerman, S.B. & Murphy, L.D. (1996). FEBS Lett. 390, 245.CrossRefGoogle Scholar