Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T14:53:31.560Z Has data issue: false hasContentIssue false

A 52-to-67 GHz dual-core push–push VCO in 40-nm CMOS

Published online by Cambridge University Press:  12 February 2018

Vadim Issakov*
Affiliation:
Infineon Technologies AG, Am Campeon 1-12, D-85579 Neubiberg, Germany
Johannes Rimmelspacher
Affiliation:
Infineon Technologies AG, Am Campeon 1-12, D-85579 Neubiberg, Germany University Erlangen-Nuremberg, Cauerstr. 9, D-91058 Erlangen, Germany
Saverio Trotta
Affiliation:
Infineon Technologies AG, Am Campeon 1-12, D-85579 Neubiberg, Germany
Marc Tiebout
Affiliation:
Infineon Technologies Austria AG, Siemensstr. 2, A-9500 Villach, Austria
Amelie Hagelauer
Affiliation:
University Erlangen-Nuremberg, Cauerstr. 9, D-91058 Erlangen, Germany
Robert Weigel
Affiliation:
University Erlangen-Nuremberg, Cauerstr. 9, D-91058 Erlangen, Germany
*
Author for correspondence: Vadim Issakov, Email: Vadim.Issakov@infineon.com

Abstract

We present a continuously tunable 52-to-67 GHz push–push dual-core voltage-controlled oscillator (VCO) in a 40 nm bulk complementary metal–oxide–semiconductor (CMOS) technology. The circuit is suitable for 60 GHz frequency-modulated-continuous-wave radar applications requiring a continuously tunable ultra-wide modulation bandwidth. The LC-tank inductor is used to couple the two VCO cores. The fundamental frequency of the VCO can be tuned from 26 to 33.5 GHz, which corresponds to a frequency tuning range of 25%. The second harmonic is extracted in a non-invasive way using a transformer. The primary side acts simultaneously as a second harmonic filter. The VCO achieves in measurement a low phase noise of −91.8 dBc/Hz at 1 MHz offset at 62 GHz and an output power of −20 dBm. The VCO including buffers dissipates in the dual-core operation mode 60 mA from a single 1.1 V supply and consumes a chip area of 0.58 mm2.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Voinigescu, SP, Dickson, TO, Gordon, M, Lee, C, Yao, T, Mangan, A, Tang, K and Yau, KHK (2006) RF and millimeter-wave IC design in the nano-(Bi)CMOS era. In Si- based Semiconductor Components for Radio-Frequency Integrated Circuits (RF IC), Transworld Research Network, pp. 3362.Google Scholar
2.Voinigescu, S (2013) High-Frequency Integrated Circuits. Cambridge, UK: Cambridge University Press, pp. 142254 .Google Scholar
3.Knapp, H, Treml, M, Schinko, A, Kolmhofer, E, Matzinger, S, Strasser, G, Lachner, R, Maurer, L and Minichshofer, J (2012) Three channel 77 GHz automotive radar transmitter in plastic package. In RFIC Symposium, pp. 119122.Google Scholar
4.Trotta, S, Dehlink, B, Reuter, R, Yin, Y, John, J, Kirchgessner, J, Morgan, D, Welch, P, Lin, J-J, Knappenberger, B, To, I and Huang, M (2009) A multi-channel Rx for 76.5 GHz automotive radar applications with 55 dB IF channel-to-channel isolation. In EuMIC, pp. 192195.Google Scholar
5.Forstner, HP, Knapp, H, Jager, H, Kolmhofer, E, Platz, J, Starzer, F, Treml, M, Schinko, A, Birschkus, G, Bock, J, Aufinger, K, Lachner, R, Meister, T, Schafer, H, Lukashevich, D, Boguth, S, Fischer, A, Reininger, F, Maurer, L, Minichshofer, J and Steinbuch, D (2008) A 77 GHz 4-channel automotive radar transceiver in SiGe. In RFIC Symposium, pp. 233236.Google Scholar
6.Issakov, V, Siprak, D, Tiebout, M, Thiede, A, Simburger, W and Maurer, L (2009) Comparison of 24 GHz receiver front-ends using active and passive mixers in CMOS. IET Circuits, Devices & Systems (CDS) 3(6), 340349.Google Scholar
7.Leeson, D (1966) A simple model of feedback oscillator noise spectrum. IEEE Proceedings 54(2), 329330.Google Scholar
8.Tiebout, M (2009) Low Power VCO Design in CMOS. Berlin: Springer.Google Scholar
9.Ahmadi-Mehr, SAR, Tohidian, M and Staszewski, RB (2016) Analysis and design of a multi-core oscillator for ultra-low phase noise. IEEE Transactions on Circuits and Systems I: Regular Papers 63(4), 529539.Google Scholar
10.Tiebout, M (2001) Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS. IEEE Journal of Solid-State Circuits 36(7), 10181024.Google Scholar
11.Fanori, L and Andreani, P (2013) Highly efficient class-C CMOS VCOs, including a comparison with class-B VCOs. IEEE Journal of Solid-State Circuits 48(7), 17301740.Google Scholar
12.Kimura, K, Okada, K and Matsuzawa, A (2015) A 20 GHz class-C VCO using noise sensitivity mitigation technique. In IEEE SiRF, pp. 8082.Google Scholar
13.Fanori, L and Andreani, P (2013) Class-D CMOS oscillators. IEEE Journal of Solid-State Circuits 48(12), 31053119.Google Scholar
14.Babaie, M and Staszewski, RB (2013) A class-F CMOS oscillator. IEEE Journal of Solid-State Circuits 48(12), 31203133.Google Scholar
15.Babaie, M and Staszewski, RB (2015) An ultra-low phase noise class-F2 CMOS oscillator with 191 dBc/Hz FoM and long-term reliability. IEEE Journal of Solid-State Circuits 50(3), 679692.Google Scholar
16.Hegazi, E, Sjöland, H and Abidi, AA (2001) A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid-State Circuits 36(12), 19211930.Google Scholar
17.Iotti, L, Mazzanti, A and Svelto, F (2017) Insights into phase-noise scaling in switch-coupled multi-core LC VCOs for E-band adaptive modulation links. IEEE Journal of Solid-State Circuits 52(7), 17031718.Google Scholar
18.Yin, J and Luong, HC (2013) A 57.5-90.1-GHz magnetically tuned multimode CMOS VCO. IEEE Journal of Solid-State Circuits 48(8), 18511861.Google Scholar
19.Jia, H, Chi, B, Kuang, L and Wang, Z (2015) A 47.6-71.0-GHz 65-nm CMOS VCO based on magnetically-coupled pi-type LC network. Transmission MTT 63(5), 16451657.Google Scholar
20.Rimmelspacher, J, Weigel, R, Hagelauer, A and Issakov, V (2017) 36% frequency-tuning-range dual-core 60 GHz push–push VCO in 45 nm RF-SOI CMOS technology. In IEEE IMS.Google Scholar
21.Issakov, V, Rimmelspacher J Trotta, S, Tiebout, M, Hagelauer, A and Weigel, R (2017) A 52-to-67 GHz dual-core push–push VCO in 40-nm CMOS. In IEEE EuMC, pp. 755758.Google Scholar
22.Issakov, V (2011) Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies. Berlin: Springer.Google Scholar
23.Trotta, S, Wintermantel, M, Dixon, J, Moeller, U, Jammers, R, Hauck, T, Samulak, A, Dehlink, B, Shun-Meen, K, Li, H, Ghazinour, A, Yin, Y, Pacheco, S, Reuter, R, Majied, S, Moline, D, Aaron, T, Trivedi, VP, Morgan, DJ and John, J (2012) An RCP packaged transceiver chipset for automotive LRR and SRR systems in SiGe BiCMOS technology. IEEE Transactions on Microwave Theory and Techniques 60(3), 778794.Google Scholar
24.Craninckx, J and Steyaert, M (1997) A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors. IEEE Journal of Solid-State Circuits 32(5), 736744.Google Scholar
25.Kinget, P (1999) Integrated GHz Voltage Controlled Oscillators. Boston: Kluwer, pp. 353381.Google Scholar
26.Bevilacqua, A, Pavan, FP, Sandner, C, Gerosa, A and Neviani, A (2007) Transformer-based dual-mode voltage-controlled oscillators. IEEE Transactions on Circuits and Systems II: Express Briefs 54(4), 293297.Google Scholar
27.Goel, A and Hashemi, H (2007) Frequency switching in dual-resonance oscillators. IEEE Journal of Solid-State Circuits 42(3), 571582.Google Scholar
28.Issakov, V, Wojnowski, M, Knoblinger, G, Fulde, M, Pressel, K and Sommer, G (2011) A 5.9-to-7.8 GHz VCO in 65-nm CMOS using high-Q inductors in an embedded wafer level BGA package. In IMS.Google Scholar
29.Zong, Z, Babaie, M and Staszewski, RB (2015) A 60 GHz 25% tuning range frequency generator with implicit divider based on third harmonic extraction with 182 dBc/Hz FoM. In RFIC Symp., pp. 279282.Google Scholar
30.Trivedi, VP, To, K-H and Huang, WM (2011) A 77 GHz CMOS VCO with 11.3 GHz tuning range, 6 dBm output power, and competitive phase noise in 65 nm bulk CMOS. In RFIC Symposium, pp. 14.Google Scholar
31.Mammei, E, Monaco, E, Mazzanti, A and Svelto, F (2013) A 33.6-to-46.2 GHz 32 nm CMOS VCO with 177.5 dBc/Hz minimum noise FOM using inductor splitting for tuning extension. In IEEE International Solid-State Circuits Conference (ISSCC) on Digital Technology Papers, pp. 350351.Google Scholar
32.Nasr, I, Dudek, M, Weigel, R and Kissinger, D (2012) A 33% tuning range high output power V-band superharmonic coupled quadrature VCO in SiGe technology. In RFIC Symposium, pp. 301304.Google Scholar
33.Shin, D, Raman, S and Koh, K-J (2015) A 0.6-V, 30-GHz six-phase VCO with superharmonic coupling in 32-nm SOI CMOS technology. In IEEE Custom Integrated Circuits Conference (CICC).Google Scholar
34.Plouchart, J-O, Ferriss, MA, Natarajan, AS, Valdes-Garcia, A, Sadhu, B, Rylyakov, A, Parker, BD, Beakes, M, Babakhani, A, Yaldiz, S, Pileggi, L, Harjani, R, Reynolds, S, Tierno, JA and Friedman, D (2013) A 23.5 GHz PLL with an adaptively biased VCO in 32 nm SOI-CMOS. Trans. IEEE Circuits and Systems – I: Regular Papers 60(8), 20092017.Google Scholar
35.Chao, Y and Luong, HC (2013) A transformer-based dual-band VCO and ILFDs for wide-band mm-wave LO generation. In IEEE Custom Integrated Circuits Conference (CICC), pp. 14.Google Scholar