Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T08:02:17.463Z Has data issue: false hasContentIssue false

A 60 GHz 14 dBm power amplifier with a transformer-based power combiner in 65 nm CMOS

Published online by Cambridge University Press:  08 April 2011

Dixian Zhao
Affiliation:
ESAT-MICAS, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B3001 Leuven, Belgium. Phone: + 32 16 321975
Ying He
Affiliation:
ESAT-MICAS, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B3001 Leuven, Belgium. Phone: + 32 16 321975
Lianming Li
Affiliation:
ESAT-MICAS, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B3001 Leuven, Belgium. Phone: + 32 16 321975
Dieter Joos
Affiliation:
ST-Ericsson, Excelsiorlaan 44-46, 1930, Zaventem, Belgium
Wim Philibert
Affiliation:
ST-Ericsson, Excelsiorlaan 44-46, 1930, Zaventem, Belgium
Patrick Reynaert*
Affiliation:
ESAT-MICAS, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B3001 Leuven, Belgium. Phone: + 32 16 321975
*
Corresponding author: P. Reynaert Email: Patrick.Reynaert@esat.kuleuven.be

Abstract

A 52–61 GHz power amplifier (PA) is implemented in 65 nm bulk complementary metal oxide semiconductor (CMOS) technology. The proposed PA employs a transformer-based power combiner to sum the output power from two unit PAs. Each unit PA uses transformer-coupled two-stage differential cascode topology. The differential cascode PA is able to increase the output power and ensure stability. The transformer-based passives enable a compact layout with the PA core area of only 0.3 mm2. The PA achieves a peak power gain of 10.2 dB with 3-dB bandwidth of 9 GHz. The measured saturated output power is 14.8 dBm with a peak power-added efficiency (PAE) of 7.2%. The reverse isolation is smaller than −33 dB from 25 to 65 GHz. The PA consumes a quiescent current of 143 mA from a 1.6 V supply.

Type
Research Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]IEEE 802.15 Working Group: Wireless PAN Task Group 3c. Millimeter wave alternative PHY [Online], 2009. Available: http://www.ieee802.org/15/pub/TG3c.html.Google Scholar
[2]IEEE 802.11 Working Group: Very high throughput in 60 GHz [Online]. Available: http://www.ieee802.org/11/Reports/tgad_update.htm.Google Scholar
[3]Wireless Gigabit Alliance: WiGig White Paper [Online]. Available: http://wirelessgigabitalliance.org/specifications/.Google Scholar
[4]Doan, C.H.; Emami, S.; Niknejad, A.M.; Brodersen, R.W.: Millimeter-wave CMOS design. IEEE J. Solid-State Circuits, 40 (2005), 144155.CrossRefGoogle Scholar
[5]Razavi, B.: A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider. IEEE J. Solid-State Circuits, 43 (2008), 477485.CrossRefGoogle Scholar
[6]Chowdhury, D.; Reynaert, P.; Niknejad, A.M.: A 60 GHz 1 V + 12.3dBm transformer-coupled wideband PA in 90 nm CMOS, in ISSCC Dig. Tech. Papers, San Francisco, 2008.Google Scholar
[7]Chan, W.L.; Long, J.R.; Spirito, M.; Pekarik, J.J.: A 60 GHz-band 1 V 11.5dBm power amplifier with 11% PAE in 65 nm CMOS, in ISSCC Dig. Tech. Papers, San Francisco, 2009.Google Scholar
[8]Siligaris, A. et al. : A 60 GHz power amplifier with 14.5dBm saturation power and 25% peak PAE in CMOS 65 nm SOI, in Proc. of ESSCIRC, Athens, 2009.Google Scholar
[9]Law, C.; Pham, A.: A high-gain 60 GHz power amplifier with 20dBm output power in 90 nm CMOS, in ISSCC Dig. Tech. Papers, San Francisco, 2010.Google Scholar
[10]Boers, M.: A 60 GHz transformer coupled amplifier in 65 nm digital CMOS, in Proc. of RFIC, Anaheim, 2010.Google Scholar
[11]Reynaert, P.; Niknejad, A.M.: Power combining techniques for RF and mm-wave CMOS power amplifiers, in Proc. of ESSCIRC, Munich, 2007.Google Scholar
[12]Law, C.Y.; Pham, A.V.: A high-gain 60 GHz power amplifier with 20dBm output power in 90 nm CMOS, in ISSCC Dig. Tech. Papers, San Francisco, 2010.Google Scholar
[13]He, Y.; Li, L.; Reynaert, P.: 60 GHz power amplifier with distributed active transformer and local feedback, in Proc. of ESSCIRC, Sevilla, 2010.Google Scholar
[14]Aoki, I. et al. : A fully-integrated quad-band GSM/GPRS CMOS power amplifier. IEEE J. Solid-State Circuits, 43 (2008), 27472758.CrossRefGoogle Scholar
[15]Stephens, D.; Vanhoucke, T.; Donkers, J.: RF reliability of short channel NMOS devices, in Proc. of RFIC, Boston, 2009.Google Scholar
[16]Aoki, I.; Kee, S.D.; Rutledge, D.B.; Hajimiri, A.: Fully integrated CMOS power amplifier design using the distributed active-transformer architecture. IEEE J. Solid-State Circuits, 37 (2002), 371383.CrossRefGoogle Scholar
[17]Cheung, T.S.D.; Long, J.R.: A 21–26-GHz SiGe bipolar power amplifier MMIC. IEEE J. Solid-State Circuits, 40 (2005), 25832597.CrossRefGoogle Scholar
[18]Cheung, T.S.D.; Long, J.R.: Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits. IEEE J. Solid-State Circuits, 41 (2006), 11831200.CrossRefGoogle Scholar