Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T11:23:26.012Z Has data issue: false hasContentIssue false

Carbon-nanotube-based electrically-short resonant antennas

Published online by Cambridge University Press:  29 November 2013

Pierre Franck*
Affiliation:
CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore. Phone: +6590870567 XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
Dominique Baillargeat
Affiliation:
CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore. Phone: +6590870567 XLIM UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
Beng Kang Tay
Affiliation:
CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore. Phone: +6590870567 School of Electrical and Electronics Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798, Singapore
*
Corresponding author: P. Franck Email: pierre.franck@xlim.fr

Abstract

We present a study on using carbon nanotubes (CNTs) as the radiating part of resonant antennas in order to reduce their dimensions. A mesoscopic electromagnetic (EM) model for CNTs was developed to allow the simulation of RF devices in classical EM solvers while retaining the specific properties of CNTs. A circuit approach is also used to provide a physical interpretation of the results on monopole antennas and trend prediction. These techniques constitute a platform to study the trends and trade-offs involved in the design of these antennas. Finally, these results are used to assess suitable fabrication techniques for CNT-based short resonant antennas and conclusions are drawn on their potential applications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Burke, P.J.; Li, S.; Yu, Z.: Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotechnol., 5 (4) (2006), 314334.CrossRefGoogle Scholar
[2]Hanson, G.W.: Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag., 53 (11) (2005), 34263435.CrossRefGoogle Scholar
[3]Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1 (3) (2002), 129144.CrossRefGoogle Scholar
[4]Burke, P.J.: Corrections to “Luttinger Liquid Theory as a Model of the Gigahertz Electrical Properties of Carbon Nanotubes”. IEEE Trans. Nanotechnol., 3 (2) (2004), 331–331.Google Scholar
[5]Franck, P.; Baillargeat, D.; Tay, B.K.: Mesoscopic model for the electromagnetic properties of arrays of nanotubes and nanowires: a bulk equivalent approach. IEEE Trans. Nanotechnol., 11 (5) (2012), 964974.CrossRefGoogle Scholar
[6]Slepyan, G.Y.; Maksimenko, S.A.; Lakhtakia, A.; Yevtushenko, O.; Gusakov, A.V.: Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys. Rev. B, 60 (24) (1999), 17136.CrossRefGoogle Scholar
[7]Shuba, M.V.; Slepyan, G.Y.; Maksimenko, S.A.; Thomsen, C.; Lakhtakia, A.: Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys. Rev. B, 79 (15) (2009), 155403.CrossRefGoogle Scholar
[8]Naeemi, A.; Meindl, J.D.: Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett., 27 (5) (2006), 338340.CrossRefGoogle Scholar
[9]Franck, P.; Baillargeat, D.; Tay, B.K.: Designing carbon-nanotube-based millimeter to sub-millimeter antennas, in IEEE Int. Topical Symp. RF Nanotechnology 2012, Singapore, 2012.Google Scholar
[10]Brun, C. et al. : Hybrid EM/Circuit modeling for carbon nanotubes based interconnects, Electronics Packaging Technology Conf. (EPTC) 2011, Singapore, 2011.CrossRefGoogle Scholar
[11]Yang, Y. et al. : High frequency resistance of single-walled and multiwalled carbon nanotubes. Appl. Phys. Lett., 98 (2011), 093107.Google Scholar
[12]Franck, P.; Baillargeat, D.; Tay, B.K.: Trade-offs in designing antennas from bundled carbon nanotubes, in 2012 IEEE MTT-S Int. Microwave Symp. Digest (MTT), Montréal, Canada, 2012.CrossRefGoogle Scholar
[13]Buttiker, M.; Christen, T.: Admittance and nonlinear transport in quantum wires, point contacts, and resonant tunneling barriers, in Mesoscopic Electron Transport, vol. 345, 1997, 259289.CrossRefGoogle Scholar
[14]Lan, C.; Srisungsitthisunti, P.; Amama, P.B.; Fisher, T.S.; Xu, X.; Reifenberger, R.G.: Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation. Nanotechnology, 19 ( 2008), 125703.Google ScholarPubMed
[15]Franck, P. et al. : Plasmon resonances of carbon-nanotube-based dipole antennas for nano-interconnects, in 2011 IEEE 13th Electronics Packaging Technology Conf. (EPTC), 2011, 167–170.CrossRefGoogle Scholar
[16]Kocabas, C.; Shim, M.; Rogers, J.A.: Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc., 128 (14) (2006), 45404541.CrossRefGoogle ScholarPubMed
[17]Patil, N. et al. : Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans. Nanotechnol., 8 (4) (2009), 498504.CrossRefGoogle Scholar
[18]Ding, L.; Yuan, D.; Liu, J.: Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc., 130 (16) (2008), 54285429.CrossRefGoogle ScholarPubMed
[19]Brun, C.; Franck, P.; Coquet, P.; Baillargeat, D.; Tay, B.K.: Monopole antenna based on carbon nanotubes, in 2013 IEEE MTT-S Int. Microwave Symp. Digest (MTT), Seattle, USA, 2013.CrossRefGoogle Scholar
[20]Zhou, W.; Rutherglen, C.; Burke, P.J.: Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res., 1 (2) (2008), 158165.CrossRefGoogle Scholar
[21]Li, B. et al. : Facile “Needle-Scratching” method for fast catalyst patterns used for large-scale growth of densely aligned single-walled carbon-nanotube arrays. Small, 5 (18) (2009), 20612065.CrossRefGoogle ScholarPubMed
[22]Cao, X. et al. : Facile “Scratching” method with common metal objects to generate large-scale catalyst patterns used for growth of single-walled carbon nanotubes. Acs. Appl. Mater. Interfaces, 1 (9) (2009), 18731877.CrossRefGoogle ScholarPubMed
[23]Franck, P.; Baillargeat, D.; Tay, B.K.: Performance assessment of optimized carbon-nanotube-based wireless on-chip communication, in SPIE Optics and Photonics 2012: Nanoscience and Engineering, San Diego, USA, vol. 8462, 2012.CrossRefGoogle Scholar
[24]Franck, P.; Baillargeat, D.; Tay, B.K.: Design and assessment of carbon-nanotube-based remote links to nanodevices, In 2013 IEEE MTT-S Int. Microwave Symp. Digest (MTT), Seattle, USA, 2013.CrossRefGoogle Scholar