Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T02:44:22.223Z Has data issue: false hasContentIssue false

Design methodology for a switching-mode RF CMOS power amplifier with an output transformer

Published online by Cambridge University Press:  24 September 2015

Changhyun Lee
Affiliation:
School of Electronic Engineering, College of Information Technology, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea. Phone: +82-2-828-7166
Changkun Park*
Affiliation:
School of Electronic Engineering, College of Information Technology, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea. Phone: +82-2-828-7166
*
Corresponding author: C. Park Email: pck77@ssu.ac.kr

Abstract

In this study, we propose a design methodology for a switching-mode RF CMOS power amplifier with an output transformer. For a given supply voltage, output power, and target efficiency, the initial values of the transistor size, output inductance, and capacitance can be sequentially determined during the design of the power amplifier. The breakdown voltage of the power transistor is considered in the design methodology. To prove the feasibility of the proposed design methodology, we provide the design example of a 2.4-GHz switching-mode CMOS power amplifier with 180-nm RF CMOS technology. From the measured results, the feasibility of the proposed design methodology is proved.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Kim, J.H.; Son, H.S.; Kim, W.-Y.; Park, C.S.: Envelope amplifier with multiple-linear regulator for envelope tracking power amplifier. IEEE Trans. Microw. Theory Tech., 61 (2013), 39513960.Google Scholar
[2]Park, J.; Park, C.: An X-band CMOS power amplifier with a driver stage using a shot-through current rejection technique. Microw. Opt. Technol. Lett., 56 (2014), 11591162.Google Scholar
[3]Chen, J.-H.; Helmi, S.R.; Jou, A.Y.-S.; Mohammadi, S.: A wideband power amplifier in 45 nm CMOS SOI technology for X band applications. IEEE Micro. Wireless Compon. Lett., 23 (2013), 587589.Google Scholar
[4]Park, J.; Park, C.: Split driver stages for a switching mode power amplifier with multipairs of power stages. Microw. Opt. Technol. Lett., 56 (2014), 23412345.Google Scholar
[5]Kim, J.H.; Son, H.S.; Kim, W.-Y.; Park, C.S.: Single-ended CMOS doherty power amplifier using current boosting technique. IEEE Micro. Wireless Compon. Lett., 24 (2014), 342344.Google Scholar
[6]Lee, C.; Park, C.: 2.4 GHz CMOS power amplifier with mode-locking structure to enhance gain. Sci. World J., 2014 (2014), 15, Article ID 967181, doi: 10.1155/2014/967181.Google Scholar
[7]Aoki, I.; Kee, S.D.; Rutledge, D.B.; Hajimiri, A.: Fully integrated CMOS power amplifier design using the distributed active-transformer architecture. IEEE J. Solid-State Circuits, 37 (2002), 371383.CrossRefGoogle Scholar
[8]Francois, B.; Reynaert, P.: A fully integrated watt-level linear 900-MHz CMOS RF power amplifier for LTE-applications. IEEE Trans. Microw. Theory Tech., 60 (2012), 18781885.CrossRefGoogle Scholar
[9]Lee, S.; Nam, S.: A CMOS outphasing power amplifier with integrated single-ended chireix combiner. IEEE Trans. Circuits Syst. II – Express Briefs, 57 (2010), 411415.Google Scholar
[10]Kim, J. et al. A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer. IEEE J. Solid-State Circuits, 47 (2012), 599614.CrossRefGoogle Scholar
[11]Chang, J.-N.; Lin, Y.-S.: A high-performance CMOS power amplifier for 60 GHz short-range communication systems. Microw. Opt. Technol. Lett., 55 (2013), 11551160.CrossRefGoogle Scholar
[12]Luque, Y.; Kerherve, E.; Deltimple, N.; Leyssenne, L.; Belto, D.: CMOS stacked folded differential structure power amplifier for high power RF application. Int. J. RF Microw. Comput-Aid. Eng., 20 (2010), 611618.CrossRefGoogle Scholar
[13]Koo, B.; Na, Y.; Hong, S.: Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement. Microw. Opt. Technol. Lett., 60 (2012), 340351.Google Scholar
[14]Chung, H.-Y.; Kuo, C.-W.; Chiou, H.-K.: A full X-band power amplifier with an integrated guanella-type transformer and a predistortion linearizer in 0.18-μM CMOS. Microw. Opt. Technol. Lett., 55 (2013), 22292232.CrossRefGoogle Scholar
[15]Aloui, S.; Leite, B.; Demirel, N.; Plana, R.; Belto, D.; Kerherve, E.: High-gain and linear 60-GHz power amplifier with a thin digital 65-nm CMOS technology. IEEE Trans. Microw. Theory Tech., 61 (2013), 24252437.CrossRefGoogle Scholar
[16]Joo, T.; Lee, H.; Shim, S.; Hong, S.: CMOS RF power amplifier for UHF stationary RFID reader. IEEE Micro. Wireless Compon. Lett., 20 (2010), 106108.Google Scholar
[17]Park, C.; Kim, Y.; Kim, H.; Hong, S.: A 1.9-GHz CMOS power amplifier using three-port asymmetric transmission line transformer for a polar transmitter. IEEE Trans. Microw. Theory Tech., 55 (2007), 230238.Google Scholar
[18]Ku, B.-H.; Baek, S.-H.; Hong, S.: A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips. IEEE Trans. Microw. Theory Tech., 59 (2011), 15991609.CrossRefGoogle Scholar
[19]Kim, S. et al. An optimized design of distributed active-transformer. IEEE Trans. Microw. Theory Tech., 53 (2005), 380388.Google Scholar
[20]Oh, J.; Ku, B.; Hong, S.: A 77-GHz CMOS power amplifier with a parallel power combiner based on transmission-line transformer. IEEE Trans. Microw. Theory Tech., 61 (2013), 26622669.Google Scholar
[21]Park, C.; Kim, Y.; Kim, H.; Hong, S.: A 1.9-GHz triple-mode class-E power amplifier for a polar transmitter. IEEE Micro. Wireless Compon. Lett., 17 (2007), 148150.Google Scholar
[22]Park, C.; Han, J.; Kim, H.; Hong, S.: A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region. IEEE Trans. Microw. Theory Tech., 56 (2008), 782792.CrossRefGoogle Scholar
[23]Park, C.; Seo, C.: CMOS Class-E power amplifier (1.8-GHz) with an additional thin-film technology. IEEE Circ. Devices Syst., 4 (2010), 479485.Google Scholar
[24]Liu, G.; Haldi, P.; Liu, T.-J.K.; Niknejad, A.M.: Fully integrated CMOS power amplifier with efficiency enhancement at power back-off. IEEE J. Solid-State Circuits, 43 (2008), 600609.CrossRefGoogle Scholar
[25]Kaymaksut, E.; Reynaert, P.: Transformer-based uneven doherty power amplifier in 90 nm CMOS for WLAN applications. IEEE J. Solid-State Circuits, 47 (2012), 16591671.Google Scholar