Published online by Cambridge University Press: 07 March 2022
Electromagnetic simulation software has become an important tool for antenna design. However, high-fidelity simulation of wideband or ultra-wideband antennas is very expensive. Therefore, antenna optimization design by using an electromagnetic solver may be limited due to its high computational cost. This problem can be alleviated by the utilization of fast and accurate surrogate models. Unfortunately, conventional surrogate models for antenna design are usually prohibitive because training data acquisition is time-consuming. In order to solve the problem, a modeling method named progressive Gaussian process (PGP) is proposed in this study. Specially, when a Gaussian process (GP) is trained, test sample with the largest predictive variance is inputted into an electromagnetic solver to simulate its results. After that, the test sample is added to the training set to train the GP progressively. The process can incrementally increase some important trusted training data and improve the model generalization performance. Based on the proposed PGP, two monopole antennas are optimized. The optimization results show effectiveness and efficiency of the method.
Xie Zheng and Fei Meng are co-first authors.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.