Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T00:40:19.826Z Has data issue: false hasContentIssue false

Microwave MEMS devices designed for process robustness and operational reliability

Published online by Cambridge University Press:  18 October 2011

Mikael Sterner*
Affiliation:
Microsystem Technology Lab, KTH – Royal Institute of Technology, Osquldas väg 10, SE-100 44 Stockholm, Sweden.
Nutapong Somjit
Affiliation:
Microsystem Technology Lab, KTH – Royal Institute of Technology, Osquldas väg 10, SE-100 44 Stockholm, Sweden.
Umer Shah
Affiliation:
Microsystem Technology Lab, KTH – Royal Institute of Technology, Osquldas väg 10, SE-100 44 Stockholm, Sweden.
Sergey Dudorov
Affiliation:
Microsystem Technology Lab, KTH – Royal Institute of Technology, Osquldas väg 10, SE-100 44 Stockholm, Sweden.
Dmitry Chicherin
Affiliation:
Department of Radio Science and Engineering, SMARAD Centre of Excellence, Aalto University, PO Box 13000, FI-00076 Aalto, Finland.
Antti Räisänen
Affiliation:
Department of Radio Science and Engineering, SMARAD Centre of Excellence, Aalto University, PO Box 13000, FI-00076 Aalto, Finland.
Joachim Oberhammer
Affiliation:
Microsystem Technology Lab, KTH – Royal Institute of Technology, Osquldas väg 10, SE-100 44 Stockholm, Sweden.
*
Corresponding author: M. Sterner Email: msterner@kth.se

Abstract

This paper presents an overview on novel microwave micro-electromechanical systems (MEMS) device concepts developed in our research group during the last 5 years, which are specifically designed for addressing some fundamental problems for reliable device operation and robustness to process parameter variation. In contrast to conventional solutions, the presented device concepts are targeted at eliminating their respective failure modes rather than reducing or controlling them. Novel concepts of MEMS phase shifters, tunable microwave surfaces, reconfigurable leaky-wave antennas, multi-stable switches, and tunable capacitors are presented, featuring the following innovative design elements: dielectric-less actuators to overcome dielectric charging; reversing active/passive functions in MEMS switch actuators to improve recovery from contact stiction; symmetrical anti-parallel metallization for full stress-control and temperature compensation of composite dielectric/metal layers for free-standing structures; monocrystalline silicon as structural material for superior mechanical performance; and eliminating thin metallic bridges for high–power handling. This paper summarizes the design, fabrication, and measurement of devices featuring these concepts, enhanced by new characterization data, and discusses them in the context of the conventional MEMS device design.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Kovacs, G.T.A.: Micromachined Transducers Sourcebook, 1st ed.McGraw-Hill, New York, 1998.Google Scholar
[2]Liu, C.: Foundations of MEMS. Pearson Prentice Hall, 2006.Google Scholar
[3]Madou, M.J.: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed.CRC Press, Boca Raton, London, New York, Washington, DC, 2002.Google Scholar
[4]Rebeiz, G.M.: RF MEMS: Theory, Design, and Technology. John Wiley & Sons, New York, 2003.CrossRefGoogle Scholar
[5]Brown, E.: RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans. Microw. Theory Tech., 46 (11) (1998), 18681880.CrossRefGoogle Scholar
[6]Nguyen, H.D. et al. : Angular vertical comb-driven tunable capacitor with high-tuning capabilities. J. Microelectromech. Syst., 13 (3) (2004), 406413.CrossRefGoogle Scholar
[7]Jiang, H.; Wang, Y.; Yeh, J.-L.; Tien, N.: On-chip spiral inductors suspended over deep copper-lined cavities. IEEE Trans. Microw. Theory Tech., 48 (12) (2000), 24152423.CrossRefGoogle Scholar
[8]Nguyen, C.T.-C.: MEMS technology for timing and frequency control. IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 54 (2) (2007), 251270.CrossRefGoogle ScholarPubMed
[9]Rebeiz, G.M.; Tan, G.-L.; Hayden, J.S.: RF MEMS phase shifters: design and applications. IEEE Microw. Mag., 3 (2) (2002), 7281.CrossRefGoogle Scholar
[10]Papapolymerou, J.; Lange, K.; Goldsmith, C.; Malczewski, A.; Kleber, J.: Reconfigurable double-stub tuners using MEMS switches for intelligent RF front-ends. IEEE Trans. Microw. Theory Tech., 51 (1) (2003), 271278.CrossRefGoogle Scholar
[11]Cetiner, B.; Qian, J.; Chang, H.; Bachman, M.; Li, G.; De Flaviis, F.: Monolithic integration of RF MEMS switches with a diversity antenna on PCB substrate. IEEE Trans. Microw. Theory Tech., 51 (1) (2003) 332335.CrossRefGoogle Scholar
[12]Llamas-Garro, I.; Corona-Chavez, A.: Micromachined transmission lines for millimeter-wave applications, in 16th Int. Conf. Electronics, Communications and Computers, 2006. CONIELECOMP, 2006, 15.Google Scholar
[13]Tilmans, H.A.C.; De Raedt, W.; Beyne, E.: MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’. IOP J. Micromech. Microeng., 13 (4) (2003), S139S163.CrossRefGoogle Scholar
[14]Hartzell, A.L.; da Silva, M.G.; Shea, H.R.: MEMS Reliability. SpringerLink, 2011.Google Scholar
[15]Petersen, K.: Silicon as a mechanical material. Proc. IEEE, 70 (5) (1982), 420457.CrossRefGoogle Scholar
[16]Thiel, W.; Tornquist, K.; Reano, R.; Katehi, L.: A study of thermal effects in RF-MEM-switches using a time domain approach, in Proc. IEEE MTT-S Int. Microwave Symp. Digest, 1, 2002, 235238.Google Scholar
[17]Wibbeler, J.; Pfeifer, G.; Hietschold, M.: Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sensors Actuators A: Phys., 71 (1–2) (1998), 7480.CrossRefGoogle Scholar
[18]Goldsmith, C.; Ehmke, J.; Malczewski, A.; Pillans, B.; Eschelmann, S.; Yao, Z.; Brank, J.; Eberly, M.: Lifetime characterization of capacitive RF MEMS switches, in Proc. IEEE MTT-S Int. Microwave Symp., Phoenix, AZ, USA, May 2001, 779808.Google Scholar
[19]Reid, J.; Webster, R.: Measurements of charging in capacitive microelectromechanical switches. Electron. Lett., 38 (24) (2002) 15441545.CrossRefGoogle Scholar
[20]Herfst, R.; Steeneken, P.; Schmitz, J.: Time and voltage dependence of dielectric charging in rf mems capacitive switches, in Proc. 45th Annu. IEEE Int. Reliability Physics Symp., 2007, April 2007, 417421.Google Scholar
[21]Sullivan, J.P.; Friedmann, T.A.; Hjort, K.: Diamond and amorphous carbon MEMS. MRS Bull., 26 (2001), 309311.CrossRefGoogle Scholar
[22]Webster, J.; Dyck, C.; Sullivan, J.; Friedmann, T.; Carton, A.: Performance of amorphous diamond RF MEMS capacitive switch. Electron. Lett., 40 (1) (2004), 4344.CrossRefGoogle Scholar
[23]Chee, J.; Kami, R.; Fisher, T.; Peroulis, D.: DC-65 GHz characterization of nanocrystalline diamond leaky film for reliable RF MEMS switches, In European Microwave Conf., 3, October 2005.Google Scholar
[24]Mardivirin, D.; Pothier, A.; Crunteanu, A.; Vialle, B.; Blondy, P.: Charging in dielectricless capacitive RF-MEMS switches. IEEE Trans. Microw. Theory Tech., 57 (1) (2009), 231236.CrossRefGoogle Scholar
[25]Oberhammer, J.; Tang, M.; Liu, A.-Q.; Stemme, G.: Mechanically tri-stable, true single-pole-double-throw (SPDT) switches. IOP J. Micromech. Microeng., 16 (11) (2006), 22512258.CrossRefGoogle Scholar
[26]Sterner, M.; Roxhed, N.; Stemme, G.; Oberhammer, J.: Static zero-power-consumption coplanar-waveguide integrated DC-to-RF metal-contact MEMS switches in two-port and three-port configuration. IEEE Trans. Electron Dev., 57 (2010), 16591669.CrossRefGoogle Scholar
[27]Coutu, R.; Kladitis, P.; Leedy, K.; Crane, R.: Selecting metal alloy electric contact materials for MEMS switches. IOP J. Micromech. Microeng., 14 (2004), 11571164.CrossRefGoogle Scholar
[28]Mercado, L.L.; Koo, S.-M.; Lee, T.-Y.T.; Liu, L.: A mechanical approach to overcome RF MEMS switch stiction problem, in Proc. IEEE Electronic Components and Technology Conf., New Orleans, LA, USA, May 27–30, 2003, 377384.Google Scholar
[29]Johler, W.: Precious metal-reduced contact materials in telecom- and signal relays, in Proc. 47th IEEE Holm Conf. Electrical Contacts, 2001, 104116.Google Scholar
[30]Umemoto, T.; Takeuchi, T.; Tanaka, R.: The behavior of surface oxide film on ruthenium and rhodium plated contacts. IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-1, (1978), 103.CrossRefGoogle Scholar
[31]Jahn, W.: Contact metals for reed switches, in Proc. 36th IEEE Holm Conf., 15th Int. Conf. Elect. Contacts, 1990, 5358.Google Scholar
[32]Walczuk, E.; Stolarz, S.; Wojtasik, K.: Experimental study of Ag–W–Re composite materials under high-current conditions. IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-10 (1987), 283.CrossRefGoogle Scholar
[33]Umemura, S.; Yasuda, K.; Aoki, T.: Contact resistance characteristics of noble metal alloys for connector contacts. IEEE Trans. Compon., Hybrids, Manuf. Technol., 14 (1991), 181.CrossRefGoogle Scholar
[34]Slade, P.; Andersson, C.; Kossowsky, R.: The use of Ag–W–CdO and AgSi3N4 as contact materials. IEEE Trans. Parts, Hybrids, Packaging, 12 (1) (1976), 2024.CrossRefGoogle Scholar
[35]Ke, F.; Miao, J.; Oberhammer, J.: A ruthenium-based multimetal-contact rf mems switch with a corrugated diaphragm. Microelectromech. Syst., 17 (6) (2008), 14471459.Google Scholar
[36]Chiao, J.-C.; Fu, Y.; Lin, L.-Y.; Choudhury, D.: MEMS millimeter-wave components, in IEEE MTT-S Int. Microwave Symp. Digest, Anaheim, CA, USA, June 1999, 15151518.Google Scholar
[37]Oberhammer, J.; Stemme, G.: Active opening force and passive contact force electrostatic switches for soft metal contact materials. J. Microelectromech. Syst., 15 (5) (2006), 12351242.CrossRefGoogle Scholar
[38]Milanovic, V.; Maharbiz, M.; Singh, A.; Warneke, B.; Zhou, N.; Chan, H.K.; Pister, K.S.J.: Microrelays for batch transfer integration in RF systems, In Proc. IEEE Micro Electro Mechanical Systems, Miyazaki, Japan, January 2000, 787792.Google Scholar
[39]Hah, D.; Yoon, E.; Hong, S.: A low voltage actuated micromachined microwave switch using torsion springs and leverage, in Proc. IEEE MTT-S Int. Microwave Symp. Digest, 1, (2000), 157160.Google Scholar
[40]Jang, Y.-H.; Lee, Y.-S.; Kim, Y.-K.; Kim, J.-M.: High isolation RF MEMS contact switch in V and W-bands using two directional motions. Electron. Lett., 46 (2) (2010), 153155.CrossRefGoogle Scholar
[41]Dussopt, L.; Rebeiz, G.: Intermodulation distortion and power handling in RF MEMS switches, varactors, and tunable filters. IEEE Trans. Microw. Theory Tech., 51 (4) (2003), 12471256.CrossRefGoogle Scholar
[42]Girbau, D.; Otegi, N.; Pradell, L.; Lazaro, A.: Study of intermodulation in rf mems variable capacitors. IEEE Trans. Microw. Theory Tech., 54 (3) (2006), 11201130.CrossRefGoogle Scholar
[43]Duffy, S.; Bozler, C.; Rabe, S.; Knecht, J.; Travis, L.; Wyatt, P.; Keast, C.; Gouker, M.: Mems microswitches for reconfigurable microwave circuitry. Microwave Wireless Components Lett. IEEE, 11 (3) (2001), 106108.CrossRefGoogle Scholar
[44]Chen, L.; Miao, J.; Guo, L.; Lin, R.: Control of stress in highly doped polysilicon multi-layer diaphragm structure. Surface Coatings Technol., 141 (1) (2001), 96102.CrossRefGoogle Scholar
[45]Sterner, M.; Stemme, G.; Oberhammer, J.: Nanometer-scale flatness and reliability investigation of stress-compensated symmetrically-metallized monocrystalline-silicon multi-layer membranes, in 5th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), January 2010, 959962.Google Scholar
[46]Siegel, C.; Ziegler, V.; Prechtel, U.; Schonlinner, B.; Schumacher, H.: Very low complexity RF-MEMS technology for wide range tunable microwave filters, in Microwave Conf., 2005 European, 1, October 2005, 4.CrossRefGoogle Scholar
[47]Sterner, M.; Chicherin, D.; Räisänen, A.V.; Stemme, G.; Oberhammer, J.: RF MEMS high-impedance tuneable metamaterials for millimeter-wave beam steering, in Proc. IEEE/ASME Micro-Electro-Mechanical Sytems MEMS 2009, Sorrento, Italy, January 2009, 896899.Google Scholar
[48]DeNatale, J.; Mihailovich, R.: RF MEMS reliability, in Proc. Transducers 2003, Boston, MA, USA, June 2003, 943946.Google Scholar
[49]Lederer, D.; Raskin, J.-P.: New substrate passivation method dedicated to HR SOI wafer fabrication with increased substrate resistivity. IEEE Electron Dev. Lett., 26 (11) (2005), 805807.CrossRefGoogle Scholar
[50]Oberhammer, J.; Sterner, M.; Somjit, N.: Monocrystalline-silicon microwave MEMS devices: multi-stable switches, W-band phase shifters, and MEMS tuneable frequency-selective surfaces, in Springer NATO Series: Advanced Materials and Technologies for Micro/Nano Devices, Sensors and Actuators. Springer, Berlin 2009.Google Scholar
[51]Fujita, T.; Fukumoto, Y.; Suzuki, F.; Maenaka, K.: SOI-MEMS sensor for multi-environmental sensing-system, in Proc. IEEE Networked Sensing Systems, 2007, Braunschweig, Germany, June 2007, 146149.Google Scholar
[52]Niklaus, F.; Haasl, S.; Stemme, G.: Arrays of monocrystalline silicon micromirrors fabricated using CMOS compatible transfer bonding. J. Microelectromech. Syst., 12 (4) (2003), 465469.CrossRefGoogle Scholar
[53]Sakata, M.; Komura, Y.; Seki, T.; Kobayashi, K.; Sano, K.; Horiike, S.: Micromachined relay which utilizes single crystal silicon electrostatic actuator, in Proc. IEEE Micro Electro Mechanical Systems 1999, Orlando, FL, USA, January 1999, 2124.Google Scholar
[54]Weber, A.; Lang, J.; Slocum, A.: {111} Si etched planar electrical contacts for power MEMS-relays, in 53rd IEEE Holm Conf. on Electrical Contacts – 2007, Pittsburgh, PA, USA, September 2007, 156159.CrossRefGoogle Scholar
[55]Somjit, N.; Stemme, G.; Oberhammer, J.: Deep-reactive ion-etched wafer-scale-transferred all-silicon dielectric-block millimeter-wave MEMS phase shifters. J. Microelectromech. Syst., 19 (2010), 120128.CrossRefGoogle Scholar
[56]Somjit, N.; Stemme, G.; Oberhammer, J.: Binary-coded 4.25-bit w-band monocrystalline-silicon MEMS multi-stage dielectric-block phase shifters. IEEE Trans. Microw. Theory Tech., 57 (2009), 28342840.CrossRefGoogle Scholar
[57]Somjit, N.; Stemme, G.; Oberhammer, J.: Power-handling analysis of high-power W-band all-silicon MEMS phase shifters. IEEE Trans. Electron Dev., 58 (5) (2011), 15481555.CrossRefGoogle Scholar
[58]Rizk, J.B.; Rebeiz, G.M.: W-band CPW RF MEMS circuits on quartz substrates. IEEE Trans. Microw. Theory Tech., 51 (7) (2003), 18571862.CrossRefGoogle Scholar
[59]Hayden, J.S.; Rebeiz, G.M.: Very low-loss distributed X-band and Ka-band MEMS phase shifters using metal-air-metal capacitors. IEEE Trans. Microw. Theory Tech., 51 (1) (2003), 309314.CrossRefGoogle Scholar
[60]Niklaus, F.; Enoksson, P.; Griss, P.; Kälvesten, E.; Stemme, G.: Low-temperature wafer-level transfer bonding. J. Microelectromech. Syst., 10 (4) (2001), 525531.CrossRefGoogle Scholar
[61]Hung, J.; Dussopt, G.; Rebeiz, M.: Distributed 2- and 3-bit W-band MEMS phase shifters on glass sustrates. IEEE Trans. Microw. Theory Tech., 52 (2) (2004), 600606.CrossRefGoogle Scholar
[62]Chicherin, D.; Dudorov, S.; Oberhammer, J.; Sterner, M.; Räisänen, A.V.: Micro-fabricated high-impedance surface for millimeter wave beam steering applications, in Proc. 33rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, USA, September 2008.Google Scholar
[63]Sievenpiper, D.: High-impedance electromagnetic surfaces, Ph.D. dissertation, Department Electrical Engineering, Universtiy of California, Los Angeles, 1999.Google Scholar
[64]Higgins, J.; Xin, H.; Sailer, A.; Rosker, M.: Ka-band waveguide phase shifter using tunable electromagnetic crystal sidewalls. IEEE Trans. Microw. Theory Tech., 51 (4) (2003), 12811288.CrossRefGoogle Scholar
[65]Chicherin, D.; Dudorov, S.; Lioubtchenko, D.; Ovchinnikov, V.; Räisänen, A.: Millimetre wave phase shifters based on a metal waveguide with a MEMS-based high-impedance surface, in Proc. 36th European Microwave Conf., September 2006, 372375.Google Scholar
[66]Zvolensky, T.; Chicherin, D.; Raisanen, A.V.; Simovski, C.: Beam-steering mems-loaded antenna based on planar transmission lines, in Proc. Fourth European Conf. on Antennas and Propagation (EuCAP), April 2010, 14.Google Scholar
[67]Sterner, M.; Roxhed, N.; Stemme, G.; Oberhammer, J.: Electrochemically-assisted maskless selective removal of metal layers for 3D micromachined SOI RF MEMS transmission lines and devices. J. Microelectromech. Syst., 20 (4) (2011), 899908.CrossRefGoogle Scholar
[68]Wen, C.P.: Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Trans. Microw. Theory Tech., 17 (12) (1969), 10871090.CrossRefGoogle Scholar
[69]Shah, U.; Sterner, M.; Stemme, G.; Oberhammer, J.: Multi-position large tuning range digitally tuneable capacitors embedded in 3D micromachined transmission lines, in Proc. IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS), January 2011, 165168.Google Scholar
[70]Shah, U.; Sterner, M.; Stemme, G.; Oberhammer, J.: RF MEMS tuneable capacitors based on moveable sidewalls in 3D micromachined coplanar transmission lines, in IEEE Asia-Pacific Microwave Conf., Yokohama, December 2010, 18211824.Google Scholar