Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T19:36:20.425Z Has data issue: false hasContentIssue false

Genetic aspects of quality control in tsetse colonies

Published online by Cambridge University Press:  19 September 2011

R. H. Gooding
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Canada T6G 2E3
Get access

Abstract

Tsetse colonized either for laboratory studies or for release in S. I. T. programmes are assumed to be healthy and geneticallyw similar to flies in natural populations. However, insect colonies are subjected to many of the same evolutionary forces that influence genetic changes in natural populations, i.e. drift, selection, hitch-hiking, mutations, assortative mating and immigration. The influence of these on genetic structure of tsetse fly colonies is outlined, and examples are presented from several species. There is little or no evidence for adaptation during the early phases of laboratory colonization of five species of tsetse. A model is presented indicating that with as little as a 5% fitness difference between males, some colonies have existed long enough to have undergone significant changes in the relative numbers of males having “standard” and “enhanced” fitness. Slight changes in heterozygosity of colonized flies is documented by comparing colonies and field-collected flies and by comparisons within colonies over periods of several generations or years. An example of hitch-hiking is illustrated with the closely linked genes Sr (sex ratio) and Est-X in Glossina morsitans submorsitans. A possible interaction between alleles at these loci is discussed. A summary is presented of polyacrylamide gel electrophoretic methods for monitoring 16 polymorphic loci distributed among the X chromosome and autosomes of tsetse.

Résumé

Des mouches tsé-tsé groupées en vue des recherches en laboratoire ou pour des programmes S. I. T. sont censées être en bonne santé et génétiquement similaires aux mouches se trouvant dans leur milieu naturel. Cependant, les colonies d'insectes sont sujettes à la plupart des mêmes forces d'evolution qui influencent des mutations génétiques dans le milieu naturel, notamment le vent, la sélection, “le hitch-hiking”, les mutations, l'accouplement selon les phénotypes et l'immigration. L'influence de ces facteurs sur la structure génétique des colonies de mouches tsé-tsé est cernée et des exemples sont présentés a partir de plusieurs espèces. Il n'y a presque pas d'évidence quant à l'adaptation pendant les premières phases de la colonisation en laboratoire pour cinq espèces de mouches tsé-tsé. Un modèle est présenté indiquant qu'avec une différence d'aptitudes d'environ 5% entre mâles, certaines colonies ont existé assez longtemps pour subir des changements significatifs en nombres relatifs des mâles ayant des aptitudes “standard” et “renfoncés”. De légères modifications dans l'hétérozygosité des mouches groupées peuvent faire l'objet d'un document en comparant les colonies des mouches avec les mouches capturées et par comparaisons au sein des groupes pendant des périodes de plusieurs générations ou pendant des années. Un exemple de hitch-hiking est illustré par des gènes Sr (sex ration) étroitement liés et Est-X dans Glossina morsitans submorsitans. Une interaction possible entre allélomorphes et ces locus est discutée. On a présenté un résumé sur les méthodes éiéctrophorétiques du gel polyacrylamide pour repérer 16 locus polymorphiques distribués entre chromosomes X et autosomes des mouches tsé-tsé.

Type
Research Article
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartlett, A. C. (1984) Genetic changes during insect domestication. In Advances and Challenges in Insect Rearing (Edited by King, E. G. and Leppla, N. C.), pp. 28, USDA Agric. Res. Serv. New Orleans, LA.Google Scholar
Bartlett, A. C. (1985) Guidelines for genetic diversity in laboratory colony establishment and maintenance. In Handbook of Insect Rearing (Edited by Singh, P. and Moore, R. F.), Vol. 1 pp. 717. Elsevier Science Publishers. B. V., Amsterdam.Google Scholar
Brady, J. (1988) The circadian organization of behavior: Timekeeping in the tsetse fly, a model system. Adv. Study Behav. 18, 153191.CrossRefGoogle Scholar
Brady, J. and Crump, A. J. (1978) The control of circadian activity rhythms in tsetse flies: environment or physiological clock? Physiol. Entomol. 3, 177190.Google Scholar
Bush, G. L. (1975) Genetic variation in natural insect populations and its bearing on massrearing programmes. In Controlling Fruit Flies by the Sterile-insect Technique. IAEA Vienna, pp. 917.Google Scholar
Bushrod, F. M. (1984) Variations in the mitotic chromosome of Glossina morsitans centralis in Zambia. Trans. R. Soc. Trop. Med. Hyg. 78, 259.Google Scholar
Cheeseman, M. T. and Gooding, R. H. (1985) Proteolytic enzymes from tsetse flies, Glossina morsitans and Glossina palpalis (Diptera: Glossinidae). Insect Biochem. 15, 677680.Google Scholar
Dame, D. A., Birkenmeyer, D. R., Nash, T. A. M. and Jordan, A. M. (1975) The dispersal and survival of laboratory-bred and native Glossina morsitans morsitans Westw. (Diptera, Glossinidae) in the field. Bull. Entomol. Res. 65, 453457.Google Scholar
D'Haeseleer, F., van den Abbeele, J., Gooding, R. H., Rolseth, B. M. and Van der Vloedt, A. (1987) An eye color mutant (tan) in the tsetse fly, Glossina palpalis palpalis (Diptera: Glossinidae). Genome. 29, 828833.Google Scholar
Edman, J. D. and Simmons, K. R. (1985) Simuliids (mainly Simulium decorum Walker). In Handbook of lnsect Rearing (Edited by Singh, P. and Moore, R. F.), Vol. 2. pp. 145152. Elsevier Science Publishers. B. V., Amsterdam.Google Scholar
Friend, W. G., Smith, J. J. B. and Tanner, R. J. (1985) Rhodnius prolixus. In Handbook of Insect Rearing (Edited by Singh, P. and Moore, R. F.), Vol. 1, pp. 345351, Elsevier Science Publishers. B. V., Amsterdam.Google Scholar
Ferguson, A. (1980) Biochemical Systematics and Evolution. John Wiley and Sons, New York and Toronto.Google Scholar
Gooding, R. H. (1981) Genetic polymorphism in three species of tsetse flies (Diptera: Glossinidae) in Upper Volta. Acta Trop. 38, 149161.Google Scholar
Gooding, R. H. (1982) Laboratory evaluation of the lethal allele salmon for genetic control of the tsetse fly, Glossina morsitans morsitans. In Sterile Insect Technique and Radiation in Insect Control. IAEA, Vienna, STI/PUB/595. pp. 267278.Google Scholar
Gooding, R. H. (1986) Evidence for genetic control of sex ratio distortion in two colonies of Glossina morsitans submorsitans Newstead (Diptera: Glossinidae). Quaest. Entomol. 22, 1928.Google Scholar
Gooding, R. H. (1989) Genetics of two populations of Glossina morsitans centralis (Diptera: Glossinidae) from Zambia. Acta Trop. 46, 1722.Google Scholar
Gooding, R. H. (1989) Genetics of Glossina pallidipes and G. morsitans subspecies. IAEA publication, in press.Google Scholar
Gooding, R. H. and Hollebone, J. E. (1976) Heritability of adult weight in the tsetse fly Glossina morsitans morsitans Westw. (Diptera: Glossinidae). Experientia 32, 15071508.Google Scholar
Gooding, R. H. and Jordan, A. M. (1986) Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). XII. Comparison of field collected and laboratory reared flies. Can. J. Gen. Cytol. 28, 10161021.CrossRefGoogle Scholar
Gooding, R. H. and Rolseth, B. M. (1978) Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). II. Electrophoretic banding patterns of midgut alkaline phosphatase. Can. Entomol. 110, 12411246.Google Scholar
Gooding, R. H. and Rolseth, B. M. (1982) Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). VI. Multilocus comparison of three laboratory populations. Can. J. Genet. Cytol. 24, 109115.Google Scholar
Gooding, R. H., Rolseth, B. M. and Tarimo Nesbitt, S. A. (1989) Mapping four loci in Glossina morsitans submorsitans Newstead (Diptera: Glossinidae). Can. Entomol. 121, 823824.CrossRefGoogle Scholar
Huyton, P. M., Langley, P. A., Carlson, D. A. and Schwarz, M. (1980) Specificity of contact sex pheromones in tsetse flies, Glossina spp. Physiol. Entomol. 5, 253264.CrossRefGoogle Scholar
Itard, J. (1976) L'elevage de Glossina palpalis gambiensis Vanderplank, 1949 (Diptera-Muscidae) à Maisons-Alfort. Rev. Elev. Med. Vet. Pays Trop. 29, 4358.Google Scholar
Itard, J. and Maillot, L. (1966) Notes sur un élevage de Glossines (Diptera-Muscidae) entrepris, à partir de pupes expédiées d'Afrique, à Maisons-Alfort (France). Rev. Elev. Méd. Vét. Pays Trop. 19, 2944.Google Scholar
Itard, J., Maillot, L., Brunet, J. and Giret, M. (1968) Observations sur un élevage de Glossina tachinoides West., après adoption du lapin comme animal-hôte. Rev. Elev. Méd. Vét. Pays Trop. 21, 387403.CrossRefGoogle Scholar
Jackson, C. H. N. (1945) Pairing of Glossina morsitans Westwood with G. swynnertoni Austen (Diptera). Proc. R. Entomol. Soc. London. (A). 20, 106.Google Scholar
Jordan, A. M. (1970) Inbreeding of Glossina austeni. In Tsetse Fly Breeding under Laboratory Conditions and its Practical Application (Edited by de Azevedo, J. F.), pp. 137141. Junta de Investigacoes do Ultramar, Lisbon.Google Scholar
Jordan, A. M. (1980) Forty generations of inbreeding of Glossina morsitans morsitans Westwood (Diptera: Glossinidae). Bull. Entomol. Res. 70, 557562.Google Scholar
Jordan, A. M. and Curtis, C. F. (1972) Productivity of Glossina morsitans morsitans Westwood maintained in the laboratory, with particular reference to the sterile-insect release method. Bull. WHO 46, 3338.Google Scholar
Jordan, A. M., Nash, T. A. M. and Trewern, M. A. (1970) The performance of crosses between wild and laboratory-bred Glossina morsitans orientalis Vanderplank. Bull. Entomol. Res. 60, 333337.Google Scholar
Jordan, A. M., Trewern, M. A., Southern, D. I., Pell, P. E. and Davies, E. D. G. (1977) Differences in laboratory performance between strains of Glossina morsitans morsitans Westwood from Rhodesia and Tanzania and associated chromosome diversity. Bull. Entomol. Res. 67, 3548.Google Scholar
Joslyn, D. J. (1984) Maintenance of genetic variability in reared insects. In Advances and Challenges in Insect Rearing (Edited by King, E. G. and Leppla, N. C.), pp. 2029. U. S. D. A. Agr. Res. Serv. New Orleans, LA.Google Scholar
Kidwell, M. (1983) Intra-specific hybrid sterility. In The Genetics and Biology of Drosophila. (Edited by Ashburner, M., Carson, H. L. and Thompson, J. N. Jr), Vol. 3 pp. 125154. Academic Press, NY.Google Scholar
Kunz, S. E. and Schmidt, C. D. (1985a) Haematobia irritans. In Handbook of Insect Rearing (Edited by Singh, P. and Moore, R. F.), Vol. 2, pp. 113117. Elsevier Science Publishers. B. V., Amsterdam.Google Scholar
Kunz, S. E. and Schmidt, C. D. (1985b) Stomoxys calcitrans. In Handbook of Insect Rearing (Edited by Singh, P. and Moore, R. F.), Vol. 2, pp. 153156. Elsevier Science Publishers. B. V., Amsterdam.Google Scholar
Langley, P. A. (1985) Glossina spp. In Handbook of Insect Rearing (Edited by Singh, P. and Moore, R. F.) Vol. 2, pp. 97112. Elsevier Science Publishers. B. V., Amsterdam.Google Scholar
Leegwater-van der Linden, M. E. (1980) Recent advances in the rearing of Glossina pallidipes Austen. In Isotopes and Radiation Research on Animal Diseases and Their Vectors. IAEA Vienna STI/PUB/525. pp. 413423.Google Scholar
Moloo, S. K. and Kutuza, S. B. (1988) Large-scale rearing of Glossina brevipalpis in the laboratory. Med. Vet. Entomol. 2, 201202.Google Scholar
Nash, T. A. M., Kernaghan, R. J. and Boyle, J. A. (1966) The large-scale rearing of Glossina austeni (Newst.) in the laboratory. I. The use of pregnant and non-pregnant goats as hosts. Ann. Trop. Med. Parasitol. 60, 3947.Google Scholar
Nash, T. A. M., Jordan, A. M. and Boyle, J. A. (1968) The large-scale rearing of Glossina austeni (Newst.) in the laboratory. IV. The final technique. Ann. Trop. Med. Parasitol. 62, 236341.Google Scholar
Nei, M. (1975) Molecular Population Genetics and Evolution. North-Holland Publishing Company, Amsterdam and Oxford.Google Scholar
Ochieng, R. S., Otieno, L. H. and Banda, H. K. (1987) Performance of the tsetse fly Glossina pallidipes reared under simple laboratory conditions. Entomol. Exp. Appl. 45, 265270.Google Scholar
Rawlings, P. and Maudlin, I. (1984) Sex ratio distortion in Glossina morsitans submorsitans Newstead (Diptera: Glossinidae). Bull. Entomol. Res. 14, 311315.CrossRefGoogle Scholar
Rogers, A. and Kenyanjui, E. N. F. (1972) The maintenance of a colony of Glossina pallidipes Austen. Ann. Trop. Med. Parasitol. 66, 267280.Google Scholar
Rolseth, B. M. and Gooding, R. H. (1978) Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). I. Electrophoretic banding patterns of xanthine oxidase and aldehyde oxidase. Can. Entomol. 110, 12331239.Google Scholar
Tarimo Nesbitt, S. A., Gooding, R. H. and Rolseth, B. M. (1989) Genetic variation in two field populations and a laboratory colony of Glossina pallidipes Austen (Diptera: Glossinidae). J. Med. Entomol. (in press).CrossRefGoogle Scholar
Vale, G. A., Hargrove, J. W., Jordan, A. M., Langley, P. A. and Mews, A. R. (1976) Survival and behaviour of tsetse flies (Diptera, Glossinidae) released in the field: a comparison between wild flies and animal-fed and in vitro-ted laboratoryreared flies. Bull. Entomol. Res. 66, 731744.Google Scholar
Vanderplank, F. L. (1944) Hybridization between Glossina species and suggested new method for control of certain species of tsetse. Nature (London) 154, 607608.Google Scholar
Vanderplank, F. L. (1947) Experiments in the hybridisation of tsetse-flies (Glossina, Diptera) and the possibility of a new method of control. Trans. R. Entomol. Soc. London. 98, 118.Google Scholar
Van der Vloedt, A. M. V. (1980) Cross-breeding experiments with Glossina morsitans morsitans (Westwood) wild genotype and phenotype genetic marker ocra. Isotope and Radiation Research on Animal Diseases and Their Vectors. IAEA, Vienna, STI/PUB/525 pp. 425435.Google Scholar