Article contents
Geographic information system-based study to ascertain the spatial and temporal spread of red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in date plantations
Published online by Cambridge University Press: 14 June 2012
Abstract
Red palm weevil Rhynchophorus ferrugineus Olivier is a key pest of date palm in the Kingdom of Saudi Arabia. Since 1994, the Ministry of Agriculture has implemented a pheromone-based integrated pest management (IPM) strategy to control R. ferrugineus in the Kingdom. Geographic information system (GIS) technology can serve as a valuable tool to assess insect activity and in addition the impact of the control strategy. We used GIS-based techniques to ascertain the spatial and temporal spread of R. ferrugineus in 234 ha of date plantation in Al-Sohemia-1 in the Al-Ahsa region of Saudi Arabia. One hundred and fifty six pheromone (Ferrolure™) traps in Al-Sohemia-1 were logged using the Trimble global positioning system to determine the east longitude and north latitude of each pheromone trap and transformed to the GIS as a shape file. The spatial and temporal variations for R. ferrugineus activity based on captures in pheromone traps were studied for each of the four seasons of the year and also year-wise during 2009 and 2010. Results revealed that during both 2009 and 2010, maximum weevil activity was recorded during late spring and early summer, with captures declining during autumn and winter. Spatial variations in the activity of R. ferrugineus indicated that in general 2009 registered lower weevil activity compared with 2010. Furthermore, most of the area exhibited medium to very high weevil activity in spring and summer during both 2009 and 2010, while most of the area recorded very low to low weevil activity during the autumn and winter seasons of both the years. The ongoing R. ferrugineus-IPM programme in Al-Ahsa needs to be strengthened in areas showing high to very high weevil activity.
Keywords
- Type
- Research Paper
- Information
- Copyright
- Copyright © ICIPE 2012
References
- 13
- Cited by